Кто открыл геном человека. Что такое геном человека: расшифровка

1000 Genomes Project — масштабный проект, запущенный в январе 2008 года, изначальной целью которого было полное секвенирование (расшифровка) геномов тысячи человек — представителей разных рас и национальностей. В работе приняли участие команды исследователей из США, Великобритании, Италии, Перу, Кении, Нигерии, Китая и Японии. Расшифровка полного генома человека — задача непростая, так как

он содержит 20-25 тыс. активных генов. Впрочем, это составляет очень незначительную часть всех генов — остальные относятся к так называемой «мусорной ДНК», то есть не кодируют никаких белков. Но с учетом «мусорной ДНК» объем генома человека достигает около 3 млрд пар нуклеотидов.

Масштабная работа, проделанная учеными, имеет непосредственное отношение ко всем живущим на планете людям. В ходе работы ученым удалось расшифровать геномы 2504 человек, представляющих 26 разных популяций. Исследователям удалось установить, какие именно вариации имеет каждый человеческий ген — а это может помочь в том, чтобы понять, за какое генетическое заболевание он отвечает. Ученым уже удалось понять,

какие именно генетические вариации ответственны за возникновение заболеваний сердечной мышцы (миокарда), хронических воспалений желудочно-кишечного тракта, серповидноклеточной анемии (нарушений строения гемоглобина) или болезни Гоше — наследственного заболевания, которое приводит к накоплению сложных жиров во многих тканях, включая селезенку, печень, почки, легкие, головной мозг и костный мозг.

Данные, полученные в результате работы, доступны на сайте самого проекта . В ночь со вторника на среду в журнале Nature вышли две статьи , представляющие последние обзорные данные, которые были получены в ходе работы. Корреспонденту отдела науки «Газеты.Ru» удалось пообщаться с тремя учеными, которые принимали непосредственное участие в расшифровке генома человека: Полом Фличеком (одним из ведущих исследователей 1000 Genomes Project и ведущим научным сотрудником Европейской молекулярно-физической лаборатории), Гонсало Абекасисом (профессором Мичиганского университета) и Адамом Отоном (Нью-йоркский медицинский колледж им. Альберта Эйнштейна) и поговорить с ними о дальнейших планах и возможности практического применения результатов семилетней работы.

— В 2008 году, когда проект только начинался, перед учеными была поставлена цель: расшифровать полный геном тысячи человек. В октябре 2012 года журнал Nature объявил о том, что окончена расшифровка 1092 геномов. На текущий момент — к окончанию проекта — вам удалось секвенировать 2504 генома. Скажите, как вам удалось так существенно перевыполнить план?

Пол Фличек: Нам удалось секвенировать так много образцов, потому что за последние годы технологии, позволяющие осуществлять секвенирование генома, получили существенное развитие. Именно поэтому нам удалось получить примерно в 25 раз больше данных, чем было заявлено изначально.

Гонсало Абекасис: Не стоит забывать и о стоимости подобного анализа. Если в 2008 году полная расшифровка генома человека стоила около $100 тыс., то теперь эта сумма составляет менее $2 тыс.

— 30 сентября было объявлено о том, что финальная стадия проекта завершена. Можно ли говорить о полном завершении работ или же вы собираетесь идти дальше и ставить перед собой новые цели?

Пол Фличек: Перед нами стоит множество новых целей, касающихся как секвенирования ДНК, так и поиска взаимосвязей между вариациями разных генов, возникновения генетических заболеваний и других характеристик человека. Завершение 1000 Genomes Project — это действительно кульминация усилий, которые мы начали предпринимать еще 15 лет назад и целью которых было создание открытого ресурса, содержащего информацию о человеческих генах.

В будущем мы планируем расширить базу наших исследований и привлечь к нему людей, представляющих большее число популяций из разных стран мира, — в Африке, Азии и на Среднем Востоке остаются популяции, не вовлеченные в исследование. Теперь эта работа будет проводиться в рамках проекта .

Гонсало Абекасис: Кроме того, в дальнейшем мы планируем фокусироваться на том, как вариации каждого гена влияют на течение конкретной болезни. Для этого нужно изучить как можно большее число случаев течения и лечения подобных заболеваний.

Адам Отон: А еще мы собираемся проверить, как генетические вариации влияют на фенотип человека.

— А можно ли применять полученную вами информацию на практике уже сейчас? Или все-таки еще требуется дополнительное время на обработку данных?

Гонсало Абекасис: Собранная нами информация полезна для исследователей уже сейчас — она помогает ученым понять, сколько вариаций имеет каждый ген, какие из этих вариаций несут ответственность за возникновение разных заболеваний. Правда, до того момента, когда эти знания приведут к разработке новых лекарств, еще пройдет определенное время.

Адам Отон: Информация активно используется, и не только врачами, а вообще всеми желающими. Если исследователь — из любой сферы — хочет узнать, какие функции выполняет какой-либо ген, как он распространен среди населения земного шара или как выглядит какой-то участок генома, он может с легкостью получить эту информацию.

Пол Фличек: Я считаю, основная практическая польза полученных нами данных — это то, что они помогают составить карту распространения какого-то гена на планете.

Допустим, у человека родом из Азии обнаружили редкое генетическое заболевание. Но данные нашего проекта говорят, что вариация какого-то гена (вызывающего это заболевание) есть только в ДНК африканцев. Это будет означать, что корни заболевания надо искать в изменениях другого гена. Кроме того, мы стали лучше понимать, как разные популяции людей мигрировали по миру.

— Если бы вас попросили описать результаты семилетней работы в одном-двух предложениях, что бы вы сказали?

Пол Фличек: Важнейший результат 1000 Genomes Рroject — это составление каталога вариаций человеческих генов и анализ методов и инструментов, которые могут быть использованы для дальнейшего секвенирования генома человека. Этот каталог полностью бесплатен и находится в открытом доступе.

Гонсало Абекасис: Теперь у нас есть каталог, где представлены разные версии каждой последовательности ДНК, а значит, каждого гена, и с помощью которого мы можем определить, в каких регионах планеты распространена каждая версия. Мы можем использовать эту информацию, чтобы сократить время и затраты, необходимые на расшифровку генома других людей.

Адам Отон: 1000 Genomes Project самым существенным образом улучшил наше понимание того, как вариации человеческих генов распространены в мире.

— И последний вопрос: что вы чувствуете сейчас, когда семилетний проект, в котором вы принимали самое непосредственное участие, завершен?

Гонсало Абекасис: Я чувствую, что пришло время принять следующий вызов: применить то, что мы узнали, на практике и начать разрабатывать методы лечения генетических заболеваний.

Адам Оттон: Проект стал базой для дальнейшей работы: все хотят знать, что вариации генов могут рассказать нам о различных заболеваниях. Несколько следующих лет обещают быть очень насыщенными.

Пол Фличек: Мне немного грустно. Наш проект был яркой демонстрацией того, на что способны современные технологии. Проект постоянно рос и развивался — вместе с развитием технологий, а его завершение действительно означает конец целой эпохи. Хотя, само собой, использование данных, полученных при расшифровке ДНК, еще только начинается, и мне кажется, что 1000 Genomes Project можно сравнить с ребенком, которому еще расти и расти.

Проект Геном Человека

Логотип проекта

Проект по расшифровке генома человека (англ. The Human Genome Project , HGP ) - международный научно-исследовательский проект, главной целью которого было определить последовательность нуклеотидов , которые составляют ДНК и идентифицировать 20,000-25,000 генов в человеческом геноме .

Изначально планировалось определение более трёх миллиардов последовательности нуклеотидов , содержащихся в гаплоидном человеческом геноме их. Затем несколько групп обьявили о попытке расширить задачу до секвенирования диплоидного генома человека, среди них международный проект HapMap (англ.), Applied Biosystems , Perlegen, и клонированных животных) уникален, поэтому определение последовательности человеческого генома в принципе должно включать в себя и секвенирование многочисленных вариаций каждого гена. Однако, в задачи проекта «Геном человека» не входило определение последовательности всей ДНК, находящейся в человеческих клетках; а некоторые гетерохроматиновые области (в общей сложности около 8 %) остаются несеквенированными до сих пор.

Проект

Предпосылки

Проект стал кульминацией нескольких лет работы поддержаной министерством энергетики США , в частности семинаров проводившихся в 1984-м и 1986-м годах, и последовавшими министерства энергетики . Отчёт 1987 года чётко указывает: «Окончательной целью данного начинания является понимание человеческого генома» и «знание человеческого генома так же необходимо для прогресса медицины и других наук о здоровье, как знание анатомии было необходимо для достижения её нынешнего состояния». Поиски технологий, подходящих для решения предложенной задачи, начинались еще во второй половине 80-х годов.

В силу широкой международной кооперации и новых достижений в области геномики (особенно в секвенировании), а также значительных достижений в вычислительной технике, «черновик» генома был закончен в 2000 (о чём было объявлено совместно тогдашним президентом США Билом Клинтоном и британским премьер-министром Тони Блером 26 июня 2000 ). Продолжение секвенирования привело к объявлению в апреле 2003 года о почти полном завершении работы, на 2 года раньше чем планировалось . В мае , была пройдена другая веха на пути к завершению проекта, когда в журнале « .

Завершённость

Существуют многочисленные определения «полной последовательности человеческого генома». Согласно некоторым из них, геном уже полностью секвенирован, а согласно другим, этого ещё предстоит добиться. В популярной прессе было множество статей, сообщающих о «завершении» генома. Согласно определению, которое использует Международный проект по расшифровке генома человека, геном расшифрован полностью. График истории расшифровки проекта показывает, что большая часть человеческого генома была закончена в конце 2003 года. Однако еще остаётся несколько регионов, которые считаются незаконченными:

  • Прежде всего, центральные регионы каждой хромосомы, известные как центромеры , которые содержат большое количество повторяющихся последовательностей ДНК ; их сложно секвенировать при помощи современных технологий. Центромеры имеют длину миллионы (возможно десятки миллионов) пар нуклеотидов, и, по большому счёту, остаются не секвенированными.
  • Во-вторых, концы хромосом, называемые теломерами , также состоящие из повторяющихся последовательностей, и по этой причине в большинстве из 46 хромосом их расшифровка не завершена. Точно не известно, какая часть последовательности остаётся не расшифрованной до теломер, но как и с центромерами, существующие технологические ограничения препятствуют их секвенированию.
  • В-третьих, в геноме каждого индивидуума есть несколько локусов, которые содержат членов мультигенных семейств, которые также сложно расшифровать с помощью основного на сегодняшний день метода фрагментирования ДНК (англ.). В частности, эти семейства кодируют белки, важные для иммунной системы.
  • Кроме перечисленных регионов, остаётся ещё несколько брешей, разбросанных по всему геному, некоторые из которых довольно крупные, но есть надежда, что все они будут закрыты в ближайшие годы.

Б́ольшая часть остающейся ДНК сильно повторяющаяся, и маловероятно, что она содержит гены, однако это останется неизвестным, пока они не будут полностью секвенированы. Понимание функций всех генов и их регуляции далека от завершения. Роль мусорной ДНК , эволюция генома, различия между индивидуумами, и многие другие вопросы по-прежнему являются предметом интенсивных исследований в лабораториях всего мира.

Цели

Последовательность человеческой ДНК сохраняется в базах данных , доступных любому пользователю через интернет . Национальный центр биотехнологической информации США (и его партнёрские организации в Европе и Японии) хранят геномные последовательности в базе данных известной как GenBank (англ.), вместе с последовательностями известных и гипотетических генов и белков. Другие организации, к примеру Калифорнийский Университет в Санта-Круз (англ.) и Ensembl (англ.) поддерживают дополнительные данные и аннотации а также мощные инструменты для визуализации и поиска в этих базах. Были разработаны компьютерные программы для анализа данных, потому что сами данные без таких программ интерпретировать практически невозможно.

Процесс идентификации границ генов и других мотивов в необработанных последовательностях ДНК называется аннотацией генома (англ.) и относится к области биоинформатики . Эту работу при помощи компьютеров выполняют люди, но они делают её медленно и, чтобы удовлетворять требованиями высокой пропускной способности проектов секвенирования геномов, здесь также всё шире используют специальные компьютерные программы. Лучшие на сегодняшний день технологии аннотации используют статистические модели основанные на параллелях между последовательностями ДНК и человеческим языком , пользуясь такими концепциями информатики как формальные грамматики .

Другая, часто упускаемая из виду целью проекта «Геном человека» - исследование этических, правовых и социальных последствий расшифровки генома. Важно исследовать эти вопросы и найти наиболее подходящие решения до того, как они станут почвой для разногласий и политических проблем.

Почти все цели, которые ставил перед собой проект, были достигнуты быстрее, чем предполагалось. Проект по расшифровке генома человека был закончен на два года раньше, чем планировалось. Проект поставил разумную, достижимую цель секвенирования 95 % ДНК. Исследователи не только достигли её, но и превзошли собственные предсказания, и смогли секвенировать 99,99 % человеческой ДНК. Проект не только превзошёл все цели и выработанные ранее стандарты, но и продолжает улучшать уже достигнутые результаты.

Проект финансировался правительством США и британским благотворительным обществом Wellcome Trust (англ.), которое финансировало , а также множество других групп по всему свету. Геном был разбит на небольшие участки, примерно по 150 000 пар нуклеотидов в длину. Эти куски затем встраивали в вектор , известный как как Искусственная бактериальная хромосома (англ.) или BAC. Эти векторы созданы из бактериальных хромосом, измененных методами генной инженерии . Векторы, содержащие гены, затем можно вставлять в бактерии, где они копируются бактериальными механизмами репликации . Каждый из кусочков генома потом секвенировали раздельно методом «фрагментирования», и затем все полученные последовательности собирали воедино уже в виде компьютерного текста. Размеры полученных больших кусков ДНК, собираемых для воссоздания структуры целой хромосомы, составляли около 150 000 пар нуклеотидов. Такая система известна под именем «иерархического метода фрагментирования», потому что вначале геном разбивается на куски разного размера, положение которых в хромосоме должно быть заранее известно.

Сопоставление данных общего и частного проектов

Крейг Вентер

В 1998 году, американский исследователь Крейг Вентер и его фирма Celera Genomics запустили аналогичное исследование, финансированное частным капиталом. В начале 1990-х когда проект «Геном человека» только начинал работу, Вентер тоже работал в Национальном институте здоровья. Целью его собственного $300-миллионного проекта Celera было более быстрое и дешёвое секвенирование человеческого генома, чем в $3-миллиардном государственном проекте.

Celera использовала более рискованную разновидность метода фрагментации генома (англ.), которую использовали ранее для секвенирования бактериальных геномов размером до шести миллионов пар нуклеотидов в длину, но никогда для чего-либо столь большого, как человеческий геном, состоящий из трёх миллиардов пар нуклеотидов.

Вначале Celera анонсировала, что она будет добиваться патентной защиты «всего лишь 200 или 300» генов, но позднее внесла поправки, что ищет «защиту интеллектуальной собственности» на «полное описание важнейших структур», составляющих примерно 100-300 целей. Наконец фирма подала предварительные патентные заявки на 6,500 целых или частичных генов . Celera также обещала опубликовать результаты своей работы согласно условиям «Бермудского заявления (англ.)» 1996 года , выпуская новые данные ежеквартально (проект «Геном человека» выпускал новые данные ежедневно), однако, в отличие от проекта с государственным финансированием, фирма не дает разрешения на свободное распространение или коммерческое использование своих данных.

В марте 2000 года, президент США Билл Клинтон заявил что последовательность генома не может быть запатентована и должна быть свободно доступна для всех исследователей. После заявления президента акции компании Celera сильно упали, что потянуло вниз весь биотехнологический сектор рыночной капитализации за два дня.

Хотя рабочий вариант генома был анонсирован в июне 2000 года, Celera и учёные работавшие в проекте «Геном человека» опубликовали детали своей работы только в феврале 2001. Специальные выпуски журнала ) и журнала Science (который опубликовал статью Celera ) описали методы, использовавшиеся для производства черновика последовательности, и предложили ее анализ. Эти черновики покрывали примерно 83 % генома (90 % эухроматиновых регионов с 150 000 брешей, а также содержали порядок и ориентацию многих всё ещё не законченных сегментов). В феврале 2001 года, во время подготовки совместных публикаций, были выпущены пресс-релизы , говорящие о том, что проект был завершён обеими группами. В 2003 и 2005 гг. были анонсированы улучшенные черновики, содержавшие приблизительно 92 % последовательности.

Соревнование очень хорошо сказалось на проекте, заставив участников государственного проекта модифицировать свою стратегию, чтобы ускорить ход работы. Вначале конкуренты согласились объединить результаты, но союз распался после того, как Celera отказалась сделать свои результаты доступными через публичную базу данных GenBank с неограниченным доступом для всех пользователей. Celera включила данные проекта «Геном человека» в собственную последовательность, однако запретила попытки использовать свои данные для всех сторонних пользователей.

В 2004, исследователи из Международного Консорциума по Секвенированию Человеческого Генома (англ. International Human Genome Sequencing Consortium ) (IHGSC) проекта «Геном человека» огласили новую оценку числа генов в человеческом геноме составившую от 20,000 до 25,000 . Ранее предсказывалось от 30,000 до 40,000, а в начале проекта оценки доходили до 2,000,000. Это число продолжает колебаться и в настоящее время ожидается что ещё в течение многих лет не удастся прийти к согласию по поводу точного количества генов в человеческом геноме.

История частного проекта

Детали по данной теме смотри в статье История генетики .

В 1995 г. было показано, что данная техника применима к секвенированию первого бактериального генома (1,8 миллиона пар нуклеотидов) свободно живущего организма Haemophilus influenzae и первого генома животного (~100 млн пар оснований) . Метод включает использование автоматизированных секвенаторов, что позволяет определять более длинные индивидуальные последовательности (в то время однократно получалось приблизительно 500 пар нуклеотидов). Пересекающиеся последовательности размером примерно в 2000 пар нуклеотидов «читали» в двух направлениях, это были критические элементы, создание которых повлекло за собой разработку первых компьютерных программ сборки генома, необходимых для реконструирования больших регионов ДНК, известных под названием контиги ("contigs").

Три года спустя, в 1998, заявление только что созданной компании Celera Genomics, о том что она собирается масштабировать метод фрагментирования ДНК на человеческий геном, в некоторых кругах было встречено скептически . Техника фрагментирования разрывает ДНК на фрагменты различных размеров, от 2,000 до 300,000 пар нуклеотидов в длину, образуя то, что называется «библиотекой» ДНК. Затем ДНК «читают» с помощью автоматического секвенатора кусками по 800 пар нуклеотидов длиной с обоих концов каждого фрагмента. С помощью сложного алгоритма сборки и суперкомпьютера , кусочки собирают воедино, после чего геном может быть реконструирован из миллионов коротких фрагментов длиной в 800 пар нуклеотидов. Успех как государственного, так и частного проектов зависел от новой, более высоко автоматизированной капиллярной секвенирующей ДНК машины, которая называлась Applied Biosystems 3700 . Она прогоняла цепочки ДНК через необычайно тонкую капиллярную трубку , а не через плоский гель, как это делали в ранних моделях секвенаторов. Ещё более критическим фактором была разработка новой, более масштабной программы сборки генома, ассемблера, который мог бы обрабатывать 30-50 миллионов последовательностей, требующихся для секвенирования всего человеческого генома. В то время такой программы не существовало. Одним из первых крупных проектов в Celera Genomics стала разработка данного ассемблера, который был написан параллельно с созданием большой, высокоавтоматизированной фабрики секвенирования геномов. Разработка ассемблера велась под руководством Брайена Рамоса (англ. Brian Ramos ). Первая версия появилась в 2000 году, когда команда Celera объединила силы с профессором Джеральдом Рубином (англ.) для секвенирования генома фруктовой мушки Дрозофила меланогастер методом фрагментирования генома . Собрав 130 миллионов пар нуклеотидов, программа обработала, по меньшей мере, в 10 раз больше данных, чем любой ранее собранный из результатов метода фрагментирования геном. Год спустя команда Celera опубликовала свою сборку трёх миллиардов пар нуклеотидов человеческого генома.

Как были достигнуты результаты

IHGSC для ориентации и проверки правильности сборки последовательности каждой человеческой хромосомы использовал секвенирование концевых фрагментов в сочетании с картированием больших (около 100 тыс. пар оснований) плазмидных клонов, полученных методом фрагментирования генома, а также применял метод фрагментирования меньших субклонов тех же плазмид, а также множество других данных .

Группа Celera понимала важность метода фрагментирования генома и тоже использовала саму последовательность, чтобы ориентировать и найти правильное местоположение секвенированных фрагментов внутри хромосомы. Однако компания использовала и публично доступные данные из проекта «Геном человека», чтобы контролировать процесс сборки и ориентации, что поставило под вопрос независимость ее данных .

Доноры генома

В межгосударственном проекте «Геном человека» (HGP), исследователи из IHGSC взяли у большого числа доноров образцы крови (женщин) и спермы (мужчин). Из числа собранных образцов источником ДНК стали лишь несколько. Таким образом, личности доноров были скрыты, чтобы ни доноры, ни учёные не могли знать, чья именно ДНК была секвенирована. Во всём проекте были использованы многочисленные клоны ДНК из различных библиотек (англ.). Большинство из этих библиотек были созданы доктором Питером де Хонгом (англ. Pieter J. de Jong ). Неформально сообщалось, и в сообществе генетиков хорошо известно, что большая часть ДНК в государственном проекте получена от единственного анонимного донора - мужчины из Буффало (кодовое название RP11) .

В проекте компании Celera Genomics для секвенирования использовалась ДНК, поступившая от пяти различных человек. Крейг Вентер , в то время бывший главным научным руководителем Celera Genomics, позднее признался (в публичном письме в журнал Science), что его ДНК была одним из 21 образцов в общем фонде, пять из которых были отобраны для использования в проекте .

4 сентября 2007 года, команда под руководством Крейга Вентера опубликовала полную последовательность его собственной ДНК , впервые сняв покров тайны с шестимиллиарднонуклеотидной последовательности генома единственного человека.

Перспективы

Работа над интерпретацией данных генома находится всё ещё в своей начальной стадии. Ожидается что детальное знание человеческого генома откроет новые пути к успехам в медицине и биотехнологии . Ясные практические результаты проекта появились ещё до завершения работы. Несколько компаний, например Myriad Genetics (англ.), начали предлагать простые способы проведения генетических тестов, которые могут показать предрасположенность к различным заболеваниям, включая рак груди , нарушения свёртываемости крови , кистозный фиброз , заболевания печени и многим другим. Также ожидается, что информация о геноме человека поможет поиску причин возникновения рака , болезни Альцгеймера и другим областям клинического значения и, вероятно, в будущем может привести к значительным успехам в их лечении.

Также ожидается множество полезных для биологов результатов. Например, исследователь, изучающий определённую форму рака может сузить свой поиск до одного гена. Посетив базу данных человеческого генома в сети , этот исследователь может проверить что другие учёные написали об этом гене включая (потенциально) трёхменую структуру его производного белка, его функции, его эволюционную связь с другими человеческими генами или с генами в мышах или дрожжах или дрозофиле, возможные пагубные мутации, взаимосвязь с другими генами, тканями тела в которых ген активируется, заболеваниями, связанными с этим геном или другие данные.

Более того, глубокое понимание процесса заболевания на уровне молекулярной биологии может предложить новые терапевтические процедуры. Учитывая установленную огромную роль ДНК в молекулярной биологии и её центральную роль в определении фундаментальных принципов работы клеточных процессов , вероятно, что расширение знаний в данной области будет способствовать успехам медицины в различных областях клинического значения, которые без них были бы невозможны.

Анализ сходства в последовательностях ДНК различных организмов также открывает новые пути в исследовании теории эволюции . Во многих случаях вопросы эволюции теперь можно ставить в терминах молекулярной биологии . И в самом деле, многие важнейшие вехи в истории эволюции (появление рибосомы и органелл , развитие эмбриона , имунной системы позвоночных) можно проследить на молекулярном уровне. Ожидается что этот проект прольёт свет на многие вопросы о сходстве и различиях между людьми и нашими ближайшими сородичами (приматами , а на деле и всеми млекопитающими).

Проект определения разнообразия человеческого генома (англ.) (HGDP), отдельное исследование, нацеленное на картирование участков ДНК, которые различаются между этническими группами , который был, по слухам, приостановлен, но на самом деле продолжает работу и в настоящее время накапливает новые результаты. В будущем HGDP, вероятно, сможет получить новые данные в области контроля заболеваний, развития человека и антропологии. HGDP может открыть секреты уязвимости этнических групп к отдельным заболеваниям и подсказать новые стратегии для их преодоления (см. Раса и здоровье (англ.)). Он может также показать, как человеческие популяции адаптировались к этим заболеваниям.

Ссылки

Внешние ссылки

  • Delaware Valley Personalized Medicine Project - использует данные из проекта генома человека, чтобы сделать медицину более персонализированной;
  • National Human Genome Research Institute (NHGRI) - NHGRI возглавил работу над проектом в Национальном Институте Здравоохранения. Этот проект, который имел своей основной целью секвенирование трёх миллиардов пар нуклеотидов, из которых состоит человеческий геном, был успешно завершён в апреле 2003 года.

Ученые, работавшие над расшифровкой последовательности генетического кода человека, заявили, что завершили свой труд на два года раньше запланированного срока.

Это объявление последовало менее чем через три года после опубликования в мировой прессе "черновика" генома. В июне 2000 года премьер-министр Великобритании Тони Блэр и тогдашний президент США Билл Клинтон заявили, что расшифровано 97% "книги жизни".

Сейчас последовательность ДНК человека раскодирована практически на 100%. При этом остаются небольшие пробелы, заполнение которых считается слишком дорогостоящим, но система, способная делать из генетических данных медицинские и научные выводы, уже хорошо отработана.

Институт Сэнгера, единственное британское учреждение, участвующее в масштабном международном проекте, выполнил почти треть всего объема работ. Большего вклада в расшифровку генома не сделал ни один научный институт в мире.

По словам его директора профессора Алана Брэдли, расшифровка генома человека - это важнейший шаг на долгом пути, и те выгоды, которые со временем получит медицина от этих исследований, поистине феноменальны.

"Только одна часть нашей работы - последовательность хромосомы 20 - уже позволила ускорить поиски генов, ответственных за развитие диабетов, лейкемии и детской экземы, - говорит профессор. - Не стоит ожидать немедленного прорыва, но нет сомнений в том, что мы завершаем одну из самых удивительных глав книги жизни".

Высокие стандарты

Не менее значительная доля работы по раскодированию легла на плечи американских ученых.

Доктор Фрэнсис Коллинс, директор Национального института исследований генома США, также указывает на долгосрочные перспективы. "Один из наших проектов предусматривал идентификацию генов предрасположенности к диабету II типа, - говорит он. - Этим заболеванием страдает каждый 20-й человек старше 45 лет, и эта доля со временем только возрастает. При помощи общедоступной карты генетических последовательностей мы сумели отобрать один ген в хромосоме 20, наличие которого в геноме, похоже, как раз и увеличивает вероятность возникновения диабета II типа".

Когда о проекте расшифровки генома человека было официально объявлено, некоторые специалисты утверждали, что на его реализацию потребуется лет 20 или даже больше. Но ход выполнения работ невероятно ускорили появление роботов-манипуляторов и суперкомпьютеров. Подстегнула деятельность ученых в этом направлении и информация о том, что параллельно геном человека расшифровывает и частно финансируемая компания Celera Genomics.

В последние три года основной целью биологов было заполнение брешей, остававшихся в уже раскодированных последовательностях ДНК, и более детальное уточнение всех остальных данных, на основе которых можно было бы выработать "золотой стандарт", который лег бы в основу дальнейших разработок в этой области.

"Нам удалось намного раньше, чем мы надеялись, достичь тех пределов, которые мы установили в своей работе, - говорит доктор Джейн Роджерс, глава отделения ДНК-последовательностей в институте Сэнгера, - сохранив при этом невероятно высокие стандарты качества. Эта работа позволяет исследователям немедленно приступить к целому ряду биомедицинских проектов. Теперь у них нас есть великолепно отшлифованный конечный продукт, который окажет им неоценимую помощь. Это как перейти от записи первой демонстрационной музыкальной кассеты к работе над полноценным классическим компакт-диском".

Зная практически всю последовательность почти трех миллиардов букв-нуклеотидов генетического кода нашей ДНК, ученые смогут вплотную заняться теми проблемами жизни человека, которые вызываются генетическими причинами.

Еще в начале апреля сэр Джон Салстон, возглавляющий британскую часть работы над проектом почти с самого его начала, заявил, что эти исследования позволят "раскопать генетические данные человека, которыми можно будет пользоваться всегда".

Работа по идентификации генов теперь может длиться дни, а не годы, как раньше. Но главная задача практической медицины заключается теперь в том, чтобы знание о том, какие именно гены работают неправильно или вызывают определенные нарушения, трансформировать в знание того, что с этим можно сделать.

А для этого им понадобится лучше понять, как, строя и поддерживая наше тело, взаимодействуют между собой белки (они же протеины) - сложные молекулы, построенные по генетическим "шаблонам" ДНК.

Наука геномика уже существует и активно развивается, но наука протеоника еще только в зачаточном состоянии. И здесь, как сказал профессор Брэдли, впереди еще "долгий путь".

Ученые, работавшие над расшифровкой последовательности генетического кода человека, заявили, что завершили свой труд на два года раньше запланированного срока. Это объявление последовало менее чем через три года после опубликования в мировой прессе "черновика" генома. В июне 2000 года премьер-министр Великобритании Тони Блэр и тогдашний президент США Билл Клинтон заявили, что расшифровано 97% "книги жизни".

Как сообщает Би-Би-Си , сейчас последовательность ДНК человека раскодирована практически на 100%. При этом остаются небольшие пробелы, заполнение которых считается слишком дорогостоящим, но система, способная делать из генетических данных медицинские и научные выводы, уже хорошо отработана. Институт Сэнгера, единственное британское учреждение, участвующее в масштабном международном проекте, выполнил почти треть всего объема работ. Большего вклада в расшифровку генома не сделал ни один научный институт в мире.

Не менее значительная доля работы по раскодированию легла на плечи американских ученых. Доктор Фрэнсис Коллинс, директор Национального института исследований генома США, также указывает на долгосрочные перспективы. "Один из наших проектов предусматривал идентификацию генов предрасположенности к диабету II типа, - говорит он. - Этим заболеванием страдает каждый 20-й человек старше 45 лет, и эта доля со временем только возрастает. При помощи общедоступной карты генетических последовательностей мы сумели отобрать один ген в хромосоме 20, наличие которого в геноме, похоже, как раз и увеличивает вероятность возникновения диабета II типа".

Когда о проекте расшифровки генома человека было официально объявлено, некоторые специалисты утверждали, что на его реализацию потребуется лет 20 или даже больше. Но ход выполнения работ невероятно ускорили появление роботов-манипуляторов и суперкомпьютеров. Подстегнула деятельность ученых в этом направлении и информация о том, что параллельно геном человека расшифровывает и частно финансируемая компания Celera Genomics. В последние три года основной целью биологов было заполнение брешей, остававшихся в уже раскодированных последовательностях ДНК, и более детальное уточнение всех остальных данных, на основе которых можно было бы выработать "золотой стандарт", который лег бы в основу дальнейших разработок в этой области. Зная практически всю последовательность почти трех миллиардов букв-нуклеотидов генетического кода нашей ДНК, ученые смогут вплотную заняться теми проблемами жизни человека, которые вызываются генетическими причинами.

Работа по идентификации генов теперь может длиться дни, а не годы, как раньше. Но главная задача практической медицины заключается теперь в том, чтобы знание о том, какие именно гены работают неправильно или вызывают определенные нарушения, трансформировать в знание того, что с этим можно сделать. А для этого им понадобится лучше понять, как, строя и поддерживая наше тело, взаимодействуют между собой белки (они же протеины) - сложные молекулы, построенные по генетическим "шаблонам" ДНК.

Первое, что заметила Дэбби Джорд (Debbie Jorde) у своей новорожденной дочери – это неестественно согнутые руки. Но у нее были и другие дефекты развития: волчья пасть, восемь пальцев на руках, восемь пальцев на ногах и отсутствие нижних век. Ребенку поставили диагноз синдрома Миллера – настолько редкого заболевания, что врачи долгое время считали, что оно не передается из поколения в поколение, а развивается только в результате спонтанных мутаций. У сына Дэбби Джорд, рожденного тремя годами ранее, были те же симптомы. Врачи уверяли, что вероятность рождения второго ребенка с таким же синдромом составляла один на миллион. Но они ошибались.

Муж Дэбби Линн Джорд (Lynn Jorde), генетик из Университета Юты (University of Utah) (Солт-Лейк Сити, США), все еще вспоминает слова врачей, сказавших, что для данного заболевания слишком мало данных, чтобы предсказать риск его развития.

Теперь, благодаря секвенированию нового поколения, Дэбби и ее дети знают свой генетический риск. Дэбби, ее муж и двое уже взрослых детей – Хизер и Логан Мадсен, стали первой семьей, чьи геномы были полностью секвенированы в 2009 г. .

На протяжении 6 месяцев ученые проводили перекрестный анализ огромного количества последовательностей ДНК из 4 геномов. Параллельное секвенирование геномов других пациентов с синдромом Миллера позволило выявить ген, ответственный за развитие данного заболевания. Им оказался ген DHODH , кодирующий белок, участвующий в синтезе нуклеотидов. Выяснилось, что заболевание носит рецессивный характер наследования. В данном случае оба родителя являлись носителями одной мутантной копии гена, следовательно, шансы рождения больного ребенка составляли 25%. Генетический анализ позволил выявить у детей еще одно рецессивное наследственное заболевание – первичную цилиарную дискинезию , влияющую на развитие легких. «До этого мы не могли понять, почему у детей так часто возникает пневмония» , - говорит Дэбби.

Семьи наподобие Джорд составляют небольшую, но все растущую группу людей, в основном с редкими заболеваниями, чьи геномы были секвенированы с целью постановки диагноза и изучения конкретной болезни. Хотя знание о полной последовательности ДНК никак не повлияло на лечение Хизер и Логана, многие люди секвенируют свой геном именно с этой целью. В прошлом году мальчику из Висконсина (США) на основании результатов секвенирования был имплантирован жизненно необходимый трансплантат красного костного мозга . Женщине с лейкемией, а также близнецам с редким наследственным заболеванием, результаты секвенирования помогли назначить адекватное лечение (см. ).

До настоящего времени секвенировать свой геном могли лишь люди, лично знавшие ученых, заинтересованных в клинической генетике, либо семьи с очень редкими заболеваниями, наподобие Джорд. Но теперь, когда полногеномное секвенирование становится все дешевле и доступнее, по всему миру запускаются клинические программы для анализа секвенированных последовательностей. Компания Illumina (Сан-Диего, США), продающая секвенаторы и программы для их обработки, предлагает услугу полногеномного секвенирования всего за 7500 долларов США для людей с тяжелыми наследственными заболеваниями, и за 10000 долларов США для онкологических больных, которым необходимо секвенировать геномы раковых и здоровых клеток.

Поскольку цены на секвенирование продолжают падать, через некоторое время определение последовательности целого генома и ее анализ будет сродни процедуре магнитно-резонансной томографии (МРТ). «Это будет так же просто, как и проведение любого другого медицинского анализа , - говорит Дэвид Бик (David Bick), клинический генетик из Медицинского Колледжа Висконсина (Medical College of Wisconsin , США), - Однако, в отличие от результатов большинства медицинских тестов, секвенирование генома предоставит огромное количество трудно интерпретируемых данных, из которых далеко не вся информация будет необходима для диагностики или лечения заболеваний пациента. Кроме того, пациент получит нежелательную информацию о предрасположенности к некоторым другим заболеваниям» .

«Анализ геномов и консультирование пациентов и их семей может стать слишком тяжелым бременем для клиницистов. То, что было опробовано на нескольких пациентах, нельзя сразу перенести на широкое клиническое использование , - говорит Эрик Грин (Eric Green), директор Национального Исследовательского Института Генома Человека (National Human Genome Research Institute, NHGRI) в Бетесде (США), - Хотя некоторые отдельные случаи очень показательны» .

Николас Волькер (Nicholas Volker) родился с недиагностируемым заболеванием кишечника, проявляющимся периодическим образованием в нем фистул, что требовало постоянного хирургического вмешательства. К тому времени, как Волькеру исполнилось 3 года, он перенес более 100 операций. Врачи предполагали, что у ребенка иммунный дефицит, и трансплантат красного костного мозга будет правильным решением проблемы. Но большое количество анализов, включая секвенирование нескольких генов, не подтвердило поставленный диагноз. После многочисленных обсуждений группа ученых из Медицинского Колледжа Висконсина решила секвенировать его экзом – последовательности, непосредственно кодирующие молекулы РНК и составляющие 1-2% генома.

Исследовав последовательности с помощью специальных программ, ученые выявили мутацию на Х-хромосоме в гене XIAP (X-linked inhibitor of Apoptosis). Известно, что дефицит белка, кодируемого данным геном, определяет высокий риск развития смертельного иммунного заболевания, и трансплантация красного костного мозга в данном случае просто необходима.

Первая программа по сравнительному полногеномному секвенированию была создана в Медицинском Колледже Висконсина. В настоящее время клинические генетики колледжа концентрируют свое внимание на пациентах с редкими наследственными заболеваниями, для которых идентификация генетических дефектов позволяет определить курс лечения. Для некоторых пациентов, принявших участие в программе, расходы согласились оплатить страховые компании. «Их обоснование довольно просто , - говорит Тина Хэмбак (Tina Hambuch), главный разработчик из клинической лаборатории компании Illumina , - Полногеномное секвенирование может обойтись дешевле серии генетических тестов, а также прояснить, потребуется ли дорогостоящее лечение» .

Примеру Медицинского Колледжа Висконсина последовали и другие институты. В Великобритании Центр Генетики Человека Wellcome Trust Centre for Human Genetics (Оксфорд) планирует отсеквенировать геномы 500 человек. Программа Недиагностируемых Заболеваний (The Undiagnosed Diseases Program) Национальных Институтов Здоровья в Бетесде (США) осуществляет секвенирование пациентов с 2008 г. Было проанализировано более 140 экзомов и 5 геномов с целью поиска молекулярных основ трудно диагностируемых заболеваний.

Генетические основы многих заболеваний все еще не изучены. Он-лайн ресурс OMIM (Online Mendelian Inheritance in Man) содержит характеристики более 7000 заболеваний человека, и только для половины из них описаны молекулярные механизмы. По словам Эрика Грина, в ближайшее время Национальный Исследовательский Институт Генома Человека выдаст грант на финансирование нескольких центров секвенирования, занимающихся исследованием молекулярных причин заболеваний.

По словам ученых, результаты секвенирования проще будет использовать для диагностики и терапии рака, нежели редких наследственных заболеваний. Клиницисты уже проводят детальный анализ некоторых раковых опухолей, чтобы адаптировать терапию под генетические характеристики пациента. Например, в геноме конкретной раковой клетки иногда можно обнаружить дефекты химических сигнальных путей, исходя из чего можно подобрать определенный препарат. Для стандартных методов диагностики это не представляется возможным.

В 2007 г. 78-летний канадец с раком языка, давшим метастазы практически по всему организму, проходил лечение в онкологическом центре British Columbia Cancer Agency (Ванкувер, Канада). Для этого типа рака не существовало одобренного метода лечения, и врачи убедили ученых онкологического центра провести секвенирование генома опухолевых клеток. Ученые также проанализировали транскриптом, что позволило изучить не только последовательность ДНК, но и количество продуцируемой опухолевыми клетками РНК. Сравнив полученные данные с данными по другим раковым опухолям и последовательностью генома нормальных клеток, ученые сконцентрировали свое внимание на гене RET , который был дуплицирован в геноме раковых клеток и транскрибировался в большое количество молекул мРНК. Известно несколько препаратов, ингибирующих белок, кодируемый данным геном. По словам Марко Марра (Marco Marra), директора онкологического центра, после долгих размышлений предпочтение было отдано препарату сунитинибу. На несколько месяцев развитие рака удалось приостановить, после чего опухоль снова начала метастазировать. Анализ вновь образовавшихся опухолей показал, что в злокачественных клетках активировались сигнальные пути, вызывающие рак, что сделано опухоль резистентной к первому препарату, но, возможно, чувствительной к другим. Но, к сожалению, было слишком поздно: пациент умер.

Научная группа Марра в настоящее время работает над созданием проекта по улучшению диагностики другого типа рака – острой миелоидной лейкемии – с помощью секвенирования генома и транскриптома. Вдохновленные примером Марра, генетики из Университета Вашингтона (Washington University) в Сент-Луисе (США) также осуществляют секвенирование геномов онкологических больных с целью подбора эффективной противораковой терапии.

Однако перевод полногеномного секвенирования из области исследований в клиническую практику сталкивается с определенными препятствиями. В отличие от исследовательской деятельности, секвенирование ДНК, предназначенное для постановки диагноза, должно проводиться в аккредитованных лабораториях, таких как в компании Illumina . Наблюдательные комитеты, осуществляющие надзор за исследованиями на человеке, еще не достигли консенсуса о том, требуется ли одобрение процедуры клинического секвенирования, а Управлению по Контролю за Качеством Пищевых Продуктов и Лекарственных Средств США (US Food and Drug Administration , FDA) еще предстоит решить, как регулировать приближающуюся волну клинического секвенирования.

Многие ученые и клиницисты опасаются, что в системе здравоохранения не достаточно людей, хорошо разбирающихся в области геномики и биоинформатики, чтобы адекватно интерпретировать огромный поток информации. По словам экспертов, данные о заболеваниях человека разбросаны по многочисленным научным статьям и базам данных, в которых порою трудно разобраться. Кроме того, анализ последовательности представляет собой весьма трудоемкую работу. По словам Хэмбак, в тех нескольких научно-исследовательских проектах, в которых принимала участие компания Illumina , только выявление всех полиморфных вариантов генома заняло 2-3 недели. «Это трудоемкая работа для высокопрофильных специалистов» , - комментирует Хэмбак.

Некоторая информация может оказаться лишней для пациентов. Медицинские генетики и специалисты по этике уже давно обеспокоены поиском генетических маркеров, связанных с риском заболеваний, не поддающихся лечению. Имея полную последовательность генома, вероятность получения такой «лишней» информации взмывает вверх. Ситуация также сложна для юных пациентов. Имеют ли родители право решать за детей, какую информацию им стоит знать, а какую – нет.

По этим причинам Стефан Кингсмор (Stephen Kingsmore), работающий в клинике Children"s Mercy Hospital в Канзас-Сити (США), утверждает, что клиническое секвенирование должно носить ограниченный характер. В настоящее время его научная группа разрабатывает метод одновременной детекции панели мутаций, связанных с более 600 рецессивными заболеваниями.

Но некоторые генетики считают, что «поезд не остановить». «После того как была продемонстрирована информативность данной технологии, я думаю, она будет широко использоваться» , - говорит Хакон Хаконарсон (Hakon Hakonarson), в настоящее время запускающий программу клинического секвенирования в Детском Госпитале Филадельфии (Children"s Hospital of Philadelphia , США).

Семья Джорд все еще размышляет над тем, что им дало секвенирование. И хотя его результаты все равно не повлияли на терапию, если бы Дэбби и Линн знали о проблемах с легкими детей раньше, можно было бы избежать опасной операции, которую пришлось перенести Хизер и Логану, чтобы снизить вероятность рецидива пневмонии.

По мнению Линна, клиническое секвенирование ждет успех. «Но я прирожденный оптимист» , - добавляет он.

Оригинальный текст: Brendan Maher