Эл регулятор напряжения. Электронный регулятор напряжения для автомобильного генератора

Лабораторный автотрансформатор практически незаменим для ремонта и наладки электронной аппаратуры. Однако наличие гальванической связи с сетью повышает риск поражения электрическим током или выхода из строя измерительной аппаратуры, используемой при настройке. Предлагаемый электронный регулятор позволяет минимизировать эти риски и сделать процесс налаживания устройств более безопасным и удобным.

Электронный регулятор позволяет изменять напряжение на нагрузке в диапазоне от 0 до 255В с шагом в 1В. Напряжение на нагрузке измеряется с разрешением 0,1В и выводится на семисегментные индикаторы. Максимальный ток в нагрузке ограничивается применяемым силовым трансформатором и сечением проводов его обмоток, в данном случае он равен 3А.

Электрические принципиальные схемы платы управления регулятора напряжения и силовой части регулятора представлены ниже.

Регулирование напряжения осуществляется за счёт коммутации вторичных обмоток трансформаторов Т1 и Т2 с помощью реле К1…К8. Напряжение на обмотке II трансформатора Т1 равно 1В, на каждой последующей обмотке значения напряжения удваиваются, достигая значения 128В на обмотке III трансформатора Т2, иными словами, уровни напряжений представляют собой ряд последовательных степеней числа «2» - двоичный ряд. Микроконтроллер DD1 подаёт двоичный код, соответствующий требуемому выходному напряжению, на ключи VT6…VT13, которые управляют реле К1…К8. Младший разряд числа соответствует реле К1, старший - К8. Допустим, необходимо получить на выходе напряжение, равное 173В. Число 173 в двоичном коде представляется как 10101101, таким образом, будут включены реле К8, К6, К4, К3, К1, которые скоммутируют обмотки с напряжениями 128В, 32В, 8В, 4В, 1В последовательно друг с другом, что в сумме составит как раз 173В.

Установка выходного напряжения осуществляется кнопками SB1…SB6. После включения регулятора в ячейке памяти, где хранится значение установленного напряжения, заносится 0. Функциональное назначение кнопок следующее:
SB1 - увеличение выходного напряжения на 1В;
SB2 - уменьшение выходного напряжения на 1В;
SB3 - увеличение выходного напряжения на 10В;
SB4 - уменьшение выходного напряжения на 10В;
SB5 - увеличение выходного напряжения на 100В;
SB6 - уменьшение выходного напряжения на 100В;

Перед установкой нового кода напряжения реле К1…К8 отключаются на время около 16мс. Несмотря на то, что время выключения реле, как правило, в 2 раза меньше времени включения, при размыкании контактов под нагрузкой возникает дуга, за счёт которой время полного отключения нагрузки увеличивается, а такой эффект может привести к броску напряжения на нагрузке в момент смены кода.

Подключением/отключением нагрузки к регулятору управляет МК DD1 при помощи кнопки SB7, ключей VT14…VT16 и реле К9, начальное состояние – отключено, включенное состояние индицируется светодиодом HL2. Ключи VT14…VT16 управляются двумя линиями порта МК DD1 – PC5, активный уровень «0», и PC6, активный уровень «1». Такое управление уменьшает вероятность непроизвольного срабатывания реле в момент включения/отключения регулятора или сброса контроллера.

Элементы C2 и R4 необходимы для гашения дуги между контактами реле при отключении нагрузки, имеющей индуктивный характер. Кроме этого, они способствуют уменьшению пускового тока устройств, содержащих выпрямители (импульсные БП), за счёт частичного предварительного заряда сглаживающего конденсатора последних, что предотвращает залипание контактов реле К9 в момент включения.

Выпрямление выходного напряжения для последующего измерения осуществляется с помощью элементов DA1, R1…R4, R6…R9, VD2,VD12, C3, C6, C8 на плате реле. Резисторы R1…R4 образуют делитель напряжения, диод VD2 шунтирует отрицательную полуволну напряжения, конденсатор C3 - фильтрующий. Однополярное включение ОУ DA1 не позволяет в отсутствие сигнала на входе получить нулевое напряжение на выходе. Для решения этой проблемы в цепь ООС DA1 включен диод VD12, напряжение падения на котором больше, чем минимальное напряжение на выходе 1 DA1. Конденсатор C8 интегрирует положительные полуволны напряжения, резистор R8 развязывает выход ОУ от ёмкостной нагрузки, а конденсатор C6 обеспечивает высокочастотное шунтирование.

Для проведения измерений применяется метод преобразования напряжения в частоту, внутренний АЦП МК DD1 не применяется. Измерительная часть состоит из интегратора, собранного на элементах DA1, R3, R4, C8, VT1, компаратора DA3 и работает следующим образом. В момент запуска преобразования микроконтроллер DD1 закрывает транзистор VT1. Одновременно с этим программа разрешает работу счетного регистра TCNT1 от тактовой частоты контроллера, деленной на 8, что составляет 1 МГц. Элементы DA1, R3, R4, образующие источник стабильного тока, заряжают конденсатор C8. Компаратор DA3 сравнивает линейно нарастающее напряжение на выв. 2 с измеряемым напряжением на выв.3, и, как только нарастающее напряжение станет больше измеряемого, на выв.1 DA2 установится низкий логический уровень. Спадающий фронт на выв. 20 контроллера DD1 приведет к записи в регистр захвата ICR1 содержимого счетного регистра TCNT1, запрос на прерывание по событию «захват» и вызов подпрограммы обработки прерывания. Подпрограмма открывает транзистор VT1, разряжая конденсатор C8, преобразует насчитанное счётчиком значение (количество подсчитанных тактов пропорционально измеряемому напряжению) в десятичную форму и выводит это значение на индикатор HL1.

Стабилитрон VD1 обеспечивает ограничение напряжения на выв. 3 относительно линейно нарастающего напряжения на выв. 2 компаратора DA3, гарантируя спадающий фронт на выв. 20 DD1, а значит, прерывание по событию «захват». Это ограничение необходимо в ситуации, когда измеряемое напряжение превышает установленное программой максимальное значение, в данном случае 499,9В. Превышение измеряемого напряжения 499,9 В приведёт к мерцанию индикатора с частотой 1 Гц и отображению числа «4999».

Если на выв. 3 компаратора DA4 присутствует нулевое значение напряжения, то отрицательного перепада на выв. 20 DD1 не произойдёт, поскольку уровень напряжения на выв. 2 будет заведомо больше. В этом случае произойдёт переполнение счётчика TCNT1, и будет вызвана подпрограмма обработки прерывания по событию «переполнение», которая выведет на индикатор значение «0.0».

Конденсатор C11 необходим для подавления выброса при переключении компаратора DA3, что приводит к преждевременному возникновению прерывания по событию «захват».

Ниже представлены схемы расположения и печатные платы блока управления и силовой части регулятора соответственно. В архиве прилагаются чертежи печатных плат в формате ACAD.

Фотографии собранных плат:

Управляющая программа написана на ассемблере. Настройка фьюз-битов показана ниже, где галочка означает, что бит запрограммирован – равен нулю, а пустой квадрат - нет.

Программирование МК DD1 осуществляется через 10-ти контактный разъём XP1 по интерфейсу ISP, при этом на плату управления регулятора необходимо подать питание +12В. После того, как МК запрограммирован, при включении питания на индикатор HL1 в течении 1с выводится число «2816», после чего МК переходит в рабочий режим, и индицирует напряжение, измеренное на выходе. Для настройки измерительных цепей регулятора на вход «+Uвып» и «GND» от внешнего источника питания подаётся напряжение +4,500В…+4,800В, которое контролируется вольтметром. Подстройкой резистора R4 на индикаторе HL1 добиваются показаний, идентичных внешнему вольтметру. Далее внешний источник питания отсоединяется, и вход «+Uвып» платы регулятора соединяется с «GND». Возможна индикация значения, отличного от нуля, из-за задержек переключения, напряжения смещения нуля компаратора DA2 или ненулевого сопротивления сток-исток транзистора VT1. Для исключения этой погрешности предусмотрена программная компенсация измеренного напряжения.

Вход в режим коррекции осуществляется нажатием кнопки SB8. Индикатор HL1 начнёт мигать с частотой 1Гц, отображая при этом текущее измеряемое значение. В этом режиме каждое нажатие кнопки SB1 увеличивает константу, которая вычитается из измеренного значения напряжения, на единицу, а нажатие кнопки SB2 – уменьшает. Результат коррекции выводится на индикатор, позволяя осуществлять регулировку в режиме реального времени. После программирования МК в ячейках памяти EEPROM по всем адресам находятся значения, равные 0хFF, поэтому при первом запуске режима коррекции ячейку, в которой содержится константа, следует обнулить, нажав кнопку SB4. После нажатия на индикаторе появится значение измеряемого напряжения.

Выход из режима коррекции происходит при повторном нажатии кнопки SB8, при этом значение константы записывается в энергонезависимую память МК DD1. После этого на регулятор вновь подаётся напряжение +4,500В…+4,800В, и дополнительной подстройкой резистора R4 добиваются нужных показаний измеряемого напряжения.

Окончательная настройка сводится к установке индицируемого напряжения на индикаторе HL1 в соответствии с переменным напряжением на выходе регулятора, которое контролируется внешним вольтметром. Установка измеряемого напряжения устанавливается резистором R3 на плате реле, при этом на выходе устанавливается максимальный уровень в 255В.

Допустимая мощность нагрузки регулятора полностью зависит от характеристик трансформаторов Т1 и Т2 и реле К1…К9. Использовать 2 трансформатора не обязательно, будет достаточно и одного, но из-за большого количества витков во вторичных обмотках разместить их на одном магнитопроводе будет затруднительно.

Оба трансформатора намотаны на тороидальных сердечниках, поскольку тороидальные трансформаторы обладают более низким током покоя, практически бесшумны при работе, имеют меньший вес и габариты, чем трансформаторы, намотанные на «П» и «Ш» -образных сердечниках.

Все обмотки намотаны проводом диаметром 1,06мм, типоразмер сердечника – D=117мм, d=58мм, h=55мм. Количество витков указано в таблице ниже.

Если регулятор предполагается использовать для питания низковольтных, но потребляющих значительный ток устройств, обмотки от 1В до 16В имеет смысл мотать проводом большего сечения, нежели остальные.

Острые края тора, во избежание прокалывания изоляции у провода во время намотки, необходимо скруглить шлифмашиной или напильником, после чего наклеить на торцы шайбы из плотного картона, имеющие больший внешний диаметр, и меньше внутренний, чем у тора, на 5-7 мм. После этого тор обматывается лакотканью или киперной лентой, но если их не окажется под рукой, можно воспользоваться узким бумажным малярным скотчем.

Отводы от обмоток трансформатора лучше всего делать из гибкого и разноцветного многожильного провода, одножильный может сломаться из-за частых перегибов во время намотки, а разные цвета у обмоток помогут быстрее разобраться, какое напряжение у последних. Чтобы не перепутать фазировку при окончательном монтаже устройства, желательно сразу отмечать начало и конец обмоток. Сами обмотки пропитываются шеллаком, слои изолируется друг от друга.

Крепёжные элементы для тороидов показаны ниже, прижимная шайба изготовлена из стеклотекстолита толщиной 3мм.

В качестве прокладки между трансформаторами и корпусом регулятора используются полиуретановые мебельные подпятники.

Микроконтроллер DD1 ATmega16L можно заменить на ATmega16, резисторные сборки DR2, DR3 заменить обычными резисторами, объединив 8 выводов в один и подключив к цепи +5В. Сборка DR1 представляет собой 8 отдельных чип резисторов типоразмера 1206. Стабилизатор DA1 LM7812CV установлен на алюминиевой пластине размером 100х45 мм и толщиной 5 мм. Номиналы дугогасящей цепочки C2, R4, в зависимости от типа нагрузки, могут отличаться от указанных на схеме, возможно, их придётся пересчитать под собственные нужды. От этой цепочки можно отказаться, если вместо реле К9 использовать реле с дугогасительным магнитом.

Корпус регулятора собран из алюминиевых пластин толщиной 2мм скреплённых между собой алюминиевым уголком 15х15мм.

Фотографии собранного устройства:

При работе с регулятором, несмотря на отсутствие гальванической связи с сетью 220В, не следует забывать о технике безопасности, поскольку уровень напряжения, способный достигнуть на выходе 255В, опасен для жизни. Кроме того, при наличии элементов C2 и R4, на выходе регулятора будет присутствовать напряжение, даже если контакты реле К9 разомкнуты.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Плата управления
DD1 МК AVR 8-бит

ATmega16

1 В блокнот
DA1 Линейный регулятор

LM317

1 В блокнот
DA2 Линейный регулятор

LM7805CT

1 В блокнот
DA3 Компаратор 1 В блокнот
VT1 Полевой транзистор КП505А 1 В блокнот
VT2-VT5, VT14 Биполярный транзистор

C945

5 В блокнот
VT6-VT13, VT15,VT16 Биполярный транзистор

2N2222A

10 В блокнот
VD1 Стабилитрон на 9.1В 1 В блокнот
VD2 Выпрямительный диод

1N4148

1 В блокнот
С1, С4 470 мкФ 2 В блокнот
С2, С3, С7, С9 Конденсатор 1 мкФ 4 В блокнот
С5, С10 Конденсатор 22 пФ 2 В блокнот
С6 Электролитический конденсатор 220мкФ 1 В блокнот
С8 Конденсатор 2.2 мкФ 1 В блокнот
С11 Конденсатор 150 пФ 1 В блокнот
R1 Резистор

1 МОм

1 В блокнот
R2, R22, R25, R26 Резистор

10 кОм

4 В блокнот
R3 Резистор

510 Ом

1 В блокнот
R4 Подстроечный резистор 100 Ом 1 В блокнот
R5-R12, R23 Резистор

2 кОм

9 В блокнот
R13-R20 Резистор

150 Ом

8 В блокнот
R21 Резистор

1 кОм

1 В блокнот
R24 Резистор

330 Ом

1 В блокнот
DR1 Резисторные сборки

10 кОм

1 В блокнот
DR2,DR2 Резисторные сборки

2.7 кОм

2 В блокнот
ZQ1 Кварц 8 МГц 1 В блокнот
HL1 Индикатор E40561 1 В блокнот
HL2 Светодиод 1 В блокнот
SB1-SB8 Кнопка Без фиксации 8 В блокнот
Силовая часть
DA1 Операционный усилитель

LM358N

1 В блокнот
DA2 Линейный регулятор

LM78L12

1 В блокнот
VD1 Диодный мост

GBU606

1 В блокнот
VD2 Диод Шоттки

1N5817

1 В блокнот
VD3-VD11 Выпрямительный диод

FR107

9 В блокнот
VD12 Выпрямительный диод

1N4148

1 В блокнот
С1, С4 Электролитический конденсатор 2200мкФ 25В 2

Появление полупроводниковых приборов, способных при работе в ключевом режиме коммутировать большие мощности, привело к использованию для регулирования напряжения авиационных генераторов транзисторных и тиристорных регуляторов. Регулирование напряжения осуществляется путем изменения среднего тока возбуждения. В большинстве схем регуляторов напряжения на транзисторах принципиальная схема оконечного каскада имеет вид, представленный на рис. 4.3.а).

Рис. 4.3. а) Схема включения электронного регулятора; б) форма управляющего сигнала и среднего тока в ОВГ.

Схемы регуляторов отличаются друг от друга схемами управления импульсным элементом, роль которого выполняет мощный транзистор, включенный последовательно с обмоткой возбуждения и работающий в режиме ключа. Когда транзистор находится в закрытом состоянии, можно считать, что сопротивление цепи эмиттер - коллектор весьма велико - «ключ закрыт». Если транзистор работает в режиме насыщения (находится в открытом состоянии)- «ключ открыт», то сопротивление весьма мало. . Схема управления вырабатывает импульсы прямоугольной формы (рис. 4.3.б). При подаче прямоугольного импульса со схемы управления транзистор открывается и через обмотку возбуждения генератора начинает протекать ток. Но так как обмотка возбуждения представляет собой индуктивность, то нарастание тока в ней будет носить экспоненциальный характер. При прекращении воздействия импульса ток возбуждения также будет убывать не мгновенно, а по экспоненте, т.е. при открытом транзисторе в полюсах генератора накапливается магнитная энергия, а в паузе тока управления, ток в обмотке возбуждения продолжает идти за счет накопленной энергии в магнитном поле. Средний ток регулируется изменением скважности импульсов. При отклонении напряжения генератора от заданного значения, например, при его увеличении длительность импульса, а соответственно и время нахождения транзистора в открытом состоянии уменьшается, что приводит к снижению среднего значения тока возбуждения возбудителя генератора, и напряжение генератора возвращается к прежнему значению. При снижении напряжения генератора время нахождения транзистора в открытом состоянии увеличивается, средний ток возбуждения возбудителя и, следовательно, напряжение генератора увеличиваются.

Таким образом, уменьшение скважности ведет к увеличению среднего тока, и наоборот. Электронная комплектация ЭРН позволяет расширить функции регулятора, так, например, на самолете Л410 он защищает сеть от повышения напряжения генератора и ограничивает максимальный ток генератора при запуске двигателя.

УПРАВЛЕНИЕ И ЗАЩИТА ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА

К операциям управления относятся: дистанционное включение и отключение генераторов; автоматическое включение генераторов на нагрузку при правильной полярности и определенном соотношении напряжений генераторов и бортсети. Подключение генераторов к бортсети контролируется автоматически.

В процессе эксплуатации возможны случаи отказов элементов систем генерирования, приводящих к нарушению нормальной работы СЭС. В целях предупреждения возможных тяжелых последствий, к которым могут привести ненормальные режимы, применяют различные виды защиты. В СЭС постоянного тока применяют защиты от понижения и повышения напряжения, включения генератора с неправильной полярностью и от коротких замыканий.

Операции управления и защиты от понижения напряжения (от обратных токов) и от включения генератора с неправильной полярностью выполняются комплексным аппаратом - дифференциально-минимальным реле. Защита от повышения напряжения осуществляется с помощью автоматов защиты от перенапряжения.

В автомобилях применяют два вида регуляторов напряжения бортовой сети:

  1. Электромеханический, в котором с помощью вибрирующих контактов изменяется ток в обмотке возбуждения генератора переменного тока. Работа вибрирующий контактов обеспечивается таким образом, чтобы с ростом напряжения бортовой сети уменьшался ток в обмотке возбуждения. Однако вибрационные регуляторы напряжения поддерживают напряжение с точностью 5-10%, из-за этого существенно снижается долговечность аккумулятора и освети тельных ламп автомобиля.
  2. Электронные регуляторы напряжения бортовой сети типа Я112 , которые в народе называют "шоколадка". Недостатки этого регулятора известны всем - низкая надежность, обусловленная низким коммутационным током 5А и местом установки прямо на генераторе, что ведет к перегреву регулятора и выходу его из строя. Точность поддержания напряжения остается, несмотря на электронную схему, очень низкой и составляет 5% от номинального напряжения.

Вот поэтому я решил сделать устройство, которое свободно от вышеизложенных недостатков. Регулятор прост в настройке, точность поддержания напряжения составляет 1% от номинального напряжения. Схема, приведенная на рис.1 прошла испытания на многих автомобилях, в том числе и грузовых в течение 2-х лет и показала очень хорошие результаты.

Рис.1.

Принцип работы

При включении замка зажигания напряжение +12В подается на схему электронного регулятора. Если напряжение, поступающее на стабилитрон VD1 с делителя напряжения R1R2 недостаточно для его пробоя, то транзисторы VT1, VT2 находятся в закрытом состоянии, а VT3 - в открытом. Через обмотку возбуждения протекает максимальный ток, выходное напряжение генератора начинает расти и при достижении 13,5 - 14,2В возникает пробой стабилитрона.

Благодаря этому открываются транзисторы VT1, VT2, соответственно транзистор VT3 закрывается, ток обмотки возбуждения уменьшается и снижается выходное напряжение генератора. Снижения выходного напряжения примерно на 0,05 - 0,12В достаточно, чтобы стабилитрон перешел в запертое состояние, после чего транзисторы VT1, VT2 закрываются, а транзистор VT3 открывается и через обмотку возбуждения снова начинает протекать ток. Этот процесс непрерывно повторяется с частотой 200 - 300 Гц, которая определяется инерционностью магнитного потока.

Конструкция

При изготовлении электронного регулятора, следует обратить особое внимание на отвод тепла от транзистора VT3. На этом транзисторе, работающем в ключевом режиме, 1ем не менее выделяется значительная мощность, поэтому его следует монтировать на радиаторе. Остальные детали можно разместить на печатной плате, прикрепленной к радиатору.

Таким образом, получается очень компактная конструкция. Резистор R6 должен быть мощностью не менее 2Вт. Диод VD2 должен иметь прямой ток около 2А и обратное напряжение не менее 400В, лучше всего подходит КД202Ж, но возможны и другие варианты. Транзисторы желательно применить те, которые указаны на принципиальной схеме, особенно VT3. Транзистор VT2 можно заменить на КТ814 с любыми буквенными индексами. Стабилитрон VD1 желательно установить серии КС с напряжением стабилизации 5,6-9В, (типа КС156А, КС358А, КС172А), при этом увеличится точность поддержания напряжения.

Настройка

Правильно собранный регулятор напряжения не нуждается в особой настройке и обеспечивает стабильность напряжения бортовой сети примерно 0,1 - 0,12В, при изменении числа оборотов двигателя от 800 до 5500 об/мин. Проще всего настройку производить на стенде, состоящем из регулируемого блока питания 0 - 17В и лампочки накаливания 12В 5-10Вт. Плюсовой выход блока питания подключают к клемме “+” регулятора, минусовой выход блока питания подключают к клемме "Общ”, а лампочку накаливания подключают к клемме "Ш" и клемме "Общ” регулятора.

Настройка сводится к подбору резистора R2, который изменяют в пределах 1-5 кОм, и добиваются порога срабатывания на уровне 14,2В. Это и есть поддерживаемое напряжение бортовой сети. Увеличивать его выше 14,5В нельзя, поскольку при этом резко сократится ресурс аккумуляторов.

П. Алексеев

Электронные регуляторы напряжения автомобильных генераторов постоянного и переменного тока в последнее время находят все большее практическое применение. Это объясняется в основном тремя причинами: тем, что электронные регуляторы, во-первых, обладают высокой надежностью работы, во-вторых, обеспечивают возможность быстрой и удобной регулировки напряжения генератора и, в-третьих, не требуют каких-либо профилактических работ, связанных с эксплуатацией регулятора.

Автором статьи были исследованы различные варианты схем электронных регуляторов напряжения. На основе проведенной работы и опыта практической эксплуатации были выбраны два варианта электронных регуляторов напряжения для генераторов постоянного тока Г108М автомобиля «Москвич-408». Регуляторы могут быть использованы и с любыми другими генераторами постоянного тока, а также взяты за основу для регуляторов генераторов переменного тока (в этом случае ввиду отсутствия реле обратного тока схема регулятора упрощается). Электронный регулятор напряжения, также как и обычный, электромеханический, состоит из регулятора напряжения, реле обратного тока и реле ограничения максимального тока.

Структурная схема регулятора напряжения показана на рис. 1.

Этот узел является важнейшим и наиболее сложным узлом устройства. Он включает в себя измерительный элемент и усилительно-исполнительный элемент. Регулятор напряжения работает следующим образом. Напряжение, вырабатываемое генератором, поступает на измерительный элемент, где оно сравнивается с опорным напряжением или напряжением срабатывания измерительного элемента). Разность между напряжением генератора и опорным напряжением в виде управляющего сигнала поступает на усилительно-исполнительный элемент, который регулирует ток обмотки возбуждения генератора, поддерживая его выходное напряжение на заданном уровне.

Из большого числа известных измерительных элементов для регулятора напряжения выбраны два наиболее простых, но обладающих достаточно высокими значениями параметров. Измерительный элемент, схема которого показана на рис. 2, а, выполнен по мостовой схеме.

Рис. 2. Схемы измерительных элементов


Он работает следующим образом. При повышении напряжения генератора соответственно увеличивается напряжение на переменном резисторе R2 до напряжения стабилизации стабилитрона Д1. При дальнейшем увеличении входного напряжения напряжение на этом резисторе не изменяется. В зависимости от положения движка резистора R2 к базе транзистора Т1 прикладывается напряжение от 5,5 В до напряжения стабилизации стабилитрона, что вызывает появление почти такого же (несколько меньшего) напряжения на резисторе R5. При дальнейшем увеличении входного напряжения входит в режим стабилизации стабилитрон Д2. Это происходит при достижении входным напряжением значения, равного сумме напряжений на резисторе R5 и напряжения стабилизации стабилитрона Д2, и вызывает увеличение тока через резистор R5, увеличение напряжения на нем и закрывание транзистора Т1 (напряжение на его эмиттере становится больше напряжения на его базе). Если подключить к выходу такого измерительного элемента усилитель, нагруженный цепью обмотки возбуждения генератора, его напряжение будет поддерживаться на заданном уровне.

Измерительный элемент, выполненный по схеме рис. 2, б, работает несколько иначе. Стабилитрон Д1 включен в цепь базы транзистора Т1, который закрыт до тех пор, пока входное напряжение (с учетом положения движка резистора R2) не достигнет напряжения стабилизации стабилитрона. Ток стабилитрона открывает транзистор Т1 и, воздействуя через усилительный элемент регулятора на обмотку возбуждения, вызовет уменьшение выходного напряжения генератора.

Усилительно-исполнительный элемент электронного регулятора напряжения должен обеспечивать полное прекращение тока возбуждения генератора в соответствии с сигналом измерительного элемента и возможно меньшее падение напряжения на исполнительном транзисторе (не более 0,25-0,4 В), что уменьшает рассеиваемую транзистором мощность и повышает стабильность работы всего устройства. Кроме этого, усилительно-исполнительный элемент должен обладать высокой чувствительностью с тем, чтобы коммутацию большого тока (до 3,0-3,5 А) обеспечить малым управляющим током (10-20 мА).

На рис. 3, а и б показаны схемы усилительно-исполнительных элементов, предназначенных для работы с описанными измерительными элементами (рис. 2, а и б, соответственно).

Рис. 3. Схемы усилительно-исполнительных элементов


Оба усилительно-исполнительных элемента обладают практически одинаковыми параметрами и отличаются в основном тем, что один из них (рис. 3, а) работает как усилитель без переворачивания фазы, а второй изменяет фазу сигнала на 180°, поскольку этого требует измерительный элемент.

Реле обратного тока в электронном регуляторе напряжения обычно выполняют на полупроводниковых диодах. Диоды чаще всего выбирают кремниевые, поскольку они обладают не только более высокой термостабильностью по сравнению с германиевыми, но и большим прямым падением напряжения на них (1,1-1,3 В), используемым для работы реле ограничения максимального тока (германиевые диоды имеют прямое падение напряжения 0,5-0,8 В).

В качестве реле ограничения максимального тока обычно используют транзистор, включенный параллельно измерительному элементу электронного регулятора напряжения и воздействующий на усилительно-исполнительный элемент таким образом, чтобы ток обмотки возбуждения генератора прекращался при увеличении тока нагрузки выше допустимой величины. Управляющим сигналом для транзистора реле ограничения максимального тока является падение напряжения на диодах реле обратного тока, через которые протекает общий ток нагрузки генератора.

Принципиальные схемы двух электронных регуляторов напряжения приведены на рис. 4 и 5.

Рис. 4. Принципиальная схема электронного регулятора


Рис. 5. Принципиальная схема улучшенного электронного регулятора


Особенностью второго регулятора (рис. 5) по сравнению с первым является подключение измерительного элемента не к выводу «Я» регулятора, а к выводу «Б», на котором напряжение «скорректировано» на величину падения напряжения на диодах Д4-Д6. Поэтому регулятор по схеме рис. 5 предпочтительнее, однако для сохранения высокой чувствительности регулятора в его измерительном элементе должен быть установлен транзистор с большим статическим коэффициентом передачи тока Вст (не менее 120).

Работу электронного реле-регулятора удобно рассмотреть по схеме, которая показана на рис. 4. После запуска двигателя генератор выдает небольшое начальное напряжение (6-7 В) за счет остаточного магнетизма стального корпуса и полюсных наконечников. Это напряжение, приложенное к выводу «Я», открывает транзистор Т1, через который начинает протекать ток базы транзистора Т2. Транзистор Т2 также открывается, что приводит в свою очередь к открыванию транзистора Т3. Через транзистор Т3 начинает протекать ток обмотки возбуждения генератора, вследствие чего его выходное напряжение возрастает. При напряжении генератора 9,9 В открывается стабилитрон Д1, поддерживая с этого момента на делителе R2-R3 постоянное напряжение. Напряжение на базе транзистора Т1 устанавливают в пределах 5,3-9,9 В. Напряжение генератора продолжает возрастать до величины, равной сумме напряжения стабилизации стабилитрона Д2 и падения напряжения в резисторе R5 (5,0-9,6 В), после чего стабилитрон Д2 входит в зону стабилизации, вызывая повышение напряжения на резисторе R5. Это приводит к резкому закрыванию транзистора Т1, а вслед за ним и транзисторов Т2 и Т3, и прекращению тока возбуждения генератора. Таким образом, напряжение генератора в пределах от 5,0 + 6,9 = = 11,9 В до 9,6 + 6,9 = 16,5 В будет поддерживаться на заданном уровне, которое устанавливают переменным резистором R2.

Поскольку управление током возбуждения генератора носит ключевой характер, а обмотка возбуждения обладает значительной индуктивностью, в ней при резком прекращении тока, возникают всплески напряжения самоиндукции, могущие вывести из строя транзистор Т3. Поэтому этот транзистор защищен диодом Д7, -включенным параллельно обмотке ОВ возбуждения генератора.

В качестве реле обратного тока работают диоды Д4 -Д6. Параллельное включение диодов имеет целью уменьшение рассеиваемой на них мощности при протекании тока нагрузки, достигающего 20 А. Такое включение диодов требует их подбора по одинаковому прямому падению напряжения на каждом из них при токе 6-7 А.

Реле ограничения максимального тока выполнено на транзисторе Т4, переменном резисторе R7 и диоде Д3. Диод предохраняет реле от разрядного тока аккумуляторной батареи. Падение напряжения от протекающего через диоды Д4-Д6 тока нагрузки приложено к резистору R7, а с его движка - к базе транзистора Т4. В зависимости от тока нагрузки и положения движка резистора R7 на переход эмиттер - база этого транзистора поступает большее или меньшее напряжение. Если это напряжение достигает некоторой определенной величины, транзистор открывается, шунтируя транзисторы Т2 и Т3 и уменьшая тем самым ток обмотки возбуждения генератора. Напряжение генератора, а значит, и ток нагрузки уменьшаются. Реле ограничения максимального тока начинает работать только при перегрузках генератора. Режим управления током генератора - пульсирующий.

В описываемых устройствах не предусмотрена защита транзистора Т3 от коротких замыканий цепи его коллектора, которое возможно при пробое обмотки возбуждения генератора или случайном замыкании зажима «Ш» на корпус автомобиля. Принципиально такая защита может быть введена в устройства, но ее необходимость сомнительна, поскольку пробой обмоток возбуждения генераторов - явление очень редкое, а случайных замыканий вообще не следует допускать.

Электронный регулятор, собранный по схеме рис. 4, показал хорошие эксплуатационные характеристики. При изменении тока нагрузки от 5 до 15-18 А напряжение в бортовой сети изменяется на 0,2-0,25 В. Регулятор напряжения, выполненный по схеме рис. 5, обладает еще более высокой степенью стабилизации напряжения. Расход энергии от аккумуляторной батареи, к которой постоянно подключена цепочка R1-R3, очень невелик - примерно 10- 15 мА. При длительных стоянках автомобиля аккумуляторную батарею всегда следует отключать.

По принципу работы регулятор, собранный по схеме рис. 5, не отличается от предыдущего. Особенности его работы были отмечены выше.

Для повышения надежности и температурной стабильности работы регулятора диоды и транзисторы выбраны кремниевые (за исключением диода Д3, рис. 4, и Д2, рис.5). Переменные резисторы - проволочные с законтривающейся осью.

Транзистор Т1 в регуляторе, собранном по схеме рис. 4, должен иметь коэффициент Вст не менее 50. Транзисторы Т4 в обоих регуляторах желательно выбрать с достаточно высоким Вст. Остальные транзисторы подбора не требуют. Стабилитроны следует подобрать по напряжению стабилизации: Д1 - 9,9 В, Д2 - 6,9 В (рис. 4); Д1 - 9,4 В (рис.5). Напряжения стабилизации стабилитронов определяют границы диапазона регулирования напряжения генератора. Резисторы R6 (рис. 4) и R7 (рис. 5) должны быть рассчитаны на мощность рассеяния не менее 4 Вт.

Транзистор П210А необходимо устанавливать на радиатор в виде пластины или уголка из дюралюминия толщиной 4-5мм и общей площадью 30-40 см2. На таком же радиаторе площадью 50-70 см2 следует крепить и диоды Д4-Д6. На этих диодах выделяется значительная тепловая мощность.

Правильно собранный электронный регулятор начинает работать сразу. Напряжение устанавливают при работающем двигателе на уровне 13,7-14,0 В. Затем устанавливают максимальный ток нагрузки 20 А. Регулировочные работы можно провести и до установки регулятора на автомобиль. Для этого необходимы два источника постоянного тока: стабилизированный с плавной регулировкой напряжения в пределах от 10 В до 17 В и током нагрузки до 5 А и любой на 12-13 В с допустимым током нагрузки 20-25 А (например, автомобильный аккумулятор 6СТ42).

Сначала собирают стенд по схеме, изображенной на рис. 6, а.

Рис. 6. Схемы регулировочных стендов для налаживания электронных регуляторов


Амперметр ИП2 должен иметь шкалу до 5 А. Переменные резисторы электронного регулятора устанавливают в положения, соответствующие нижним пределам регулировки (R2 - в нижнее, R7 - в верхнее по схеме, рис. 4, R2 и R8 - в верхнее, рис. 5). Устанавливают источник стабилизированного напряжения на 10 В, включают тумблер В1 и проверяют ток амперметра ИП2, который должен быть примерно равен I = Uпит/Rl (этот ток имитирует ток возбуждения генератора). Затем, медленно увеличивая напряжение источника, замечают по вольтметру ИП1 момент резкого прекращения тока, протекающего через амперметр. Уменьшают теперь напряжение источника до момента появления тока в цепи амперметра. Разность между этими напряжениями определяет чувствительность реле напряжения. Хорошей чувствительностью следует считать 0,1 В, допустимой - 0,2 В. При более низкой чувствительности следует подобрать транзистор Т1 с большим коэффициентом Вст. Затем проверяют чувствительность на верхнем пределе регулирования напряжения (R2 переводят, в другое крайнее положение). Чувствительность на верхнем пределе может быть хуже не более чем на 10-30%. Устанавливают резистор R2 и положение, соответствующее напряжению срабатывания реле напряжения, рамному 14 В.

Затем собирают peгулировочный стенд по схеме, показанной на рис. 6,б. Амперметр ИП1 должен быть рассчитан на ток до 25 А, а ИП2 - до 5 А. Реостат R2 должен допускать рассеяние мощности до 20 Вт. Устанавливают движок R2 примерно на середину и включают тумблер В1. Амперметр ИП2 должен показывать ток 20-25 А. Ток амперметра ИП1 должен быть равен нулю, т. е. регулятор закрыт по току перегрузки. Если теперь выключить тумблер B1, вывести движок резистора R7 (R9, по рис. 5) регулятора в нижнее по схеме положение, соответствующее максимальному пределу ограничения тока нагрузки, и снова включить тумблер, ток амперметра ИП2 останется прежним, а амперметр ИП1 покажет ток, равный Uпит/Rl. Тумблер В1 следует включать на короткое время, поскольку аккумуляторная батарея при этом интенсивно разряжается. Для установки предела ограничения максимального тока нагрузки необходимо установить ползунком реостата R2 ток амперметра ИП2, равный 20 А, а затем, вращая ось резистора R7 (R8, рис. 5) электронного регулятора, добиться прекращения тока, протекающего через амперметр ИП1.

Электронный регулятор напряжения удобно устанавливать на автомобиле рядом с РРН с тем, чтобы при необходимости можно было легко их переключать.

В заключение следует отметить, что не все экземпляры автомобильных генераторов имеют начальное напряжение около 6 В. У некоторых из них оно не превышает 1-2 В. С такими генераторами электронный регулятор работать не сможет - транзистор Т3 останется закрытым, и ток обмотки возбуждения будет равным нулю. В подобных случаях электронный регулятор напряжения следует выполнить по схеме, изображенной на рис. 7.

Рис. 7. Вариант принципиальной схемы электронного регулятора


Характеристики этого регулятора практически такие же, как и у описанных выше устройств. Транзистор Т1 можно заменить на КТ602, Т5 - на МП115. Резистор R6 должен рассеивать мощность не менее 4 Вт. Можно также обойтись незначительными изменениями базовой цепи транзистора Т4 в регуляторе по схеме рис. 4. Изменения сводятся к включению диода между базой транзистора и движком резистора R7 и изменению места включения диода Д3 - он должен быть включен в той же полярности в разрыв нижнего по схеме вывода резистора R7. Однако при этом несколько ухудшится точность поддержания напряжения на выходном зажиме «Б». Оба диода - типа Д223Б.

В помощь радиолюбителю» выпуск 53

Усовершенствование электронного регулятора напряжения.

П. Алексеев

В сборнике «В помощь радиолюбителю» выпуск 53 в статье «Электронный регулятор напряжения» (с. 81 - 90) описаны несколько электронных регуляторов напряжения для автомобиля. В усилительно-исполнительном элементе всех этих устройств использован мощный германиевый транзистор П210А (Т3). Выбор именно этого транзистора был обусловлен отсутствием кремниевого аналога структуры р-n-р.

Тем не менее очевидно, что кремниевый транзистор здесь предпочтительнее, так как обеспечивает более надежную работу регулятора напряжения в условиях повышенной температуры. Поэтому была разработана схема регулятора, аналогичного по принципу работы и характеристикам устройству по схеме рис. 5 в упомянутой выше статье, но с мощным кремниевым транзистором структуры п-р-п.

Регулятор (см. схему), имеет некоторые особенности, на которых целесообразно кратко остановиться. Использование кремниевого транзистора КТ808А (V9; можно также использовать и транзистор КТ803А) потребовало включения в устройство дополнительного транзистора V8 (П303А; его можно заменить на П302 - П304, П306, П306А со статическим коэффициентом передачи тока не менее 15), повышающего к тому же чувствительность устройства.

Рис. Схема регулятора напряжения


В измерительном элементе в делителе напряжения вместо резистора использована диодная цепь V1, V2, обеспечивающая температурную компенсацию стабилитрона V3. Этим изменением температурная нестабильность регулятора напряжения в целом сведена практически к нулю.

Незначительные изменения в базовой цепи транзистора V5 по сравнению с исходным вариантом принципиально не изменили работы ограничителя максимального тока генератора, но улучшили плавность и повысили точность установки порога ограничения.

Электромеханический, в котором с помощью вибрирующих контактов изменяется ток в обмотке возбуждения генератора переменного тока. Работа вибрирующий контактов обеспечивается таким образом, чтобы с ростом напряжения бортовой сети уменьшался ток в обмотке возбуждения. Однако вибрационные регуляторы напряжения поддерживают напряжение с точностью 5-10%, из-за этого существенно снижается долговечность аккумулятора и освети тельных ламп автомобиля.
Электронные регуляторы напряжения бортовой сети типа Я112 , которые в народе называют «шоколадка». Недостатки этого регулятора известны всем — низкая надежность, обусловленная низким коммутационным током 5А и местом установки прямо на генераторе, что ведет к перегреву регулятора и выходу его из строя. Точность поддержания напряжения остается, несмотря на электронную схему, очень низкой и составляет 5% от номинального напряжения.

Вот поэтому я решил сделать устройство, которое свободно от вышеизложенных недостатков. Регулятор прост в настройке, точность поддержания напряжения составляет 1% от номинального напряжения. Схема, приведенная на рис.1 прошла испытания на многих автомобилях, в том числе и грузовых в течение 2-х лет и показала очень хорошие результаты.


Рис.1.

Принцип работы

При включении замка зажигания напряжение +12В подается на схему электронного регулятора. Если напряжение, поступающее на стабилитрон VD1 с делителя напряжения R1R2 недостаточно для его пробоя, то транзисторы VT1, VT2 находятся в закрытом состоянии, а VT3 — в открытом. Через обмотку возбуждения протекает максимальный ток, выходное напряжение генератора начинает расти и при достижении 13,5 — 14,2В возникает пробой стабилитрона.

Благодаря этому открываются транзисторы VT1, VT2, соответственно транзистор VT3 закрывается, ток обмотки возбуждения уменьшается и снижается выходное напряжение генератора. Снижения выходного напряжения примерно на 0,05 — 0,12В достаточно, чтобы стабилитрон перешел в запертое состояние, после чего транзисторы VT1, VT2 закрываются, а транзистор VT3 открывается и через обмотку возбуждения снова начинает протекать ток. Этот процесс непрерывно повторяется с частотой 200 — 300 Гц, которая определяется инерционностью магнитного потока.

Конструкция

При изготовлении электронного регулятора, следует обратить особое внимание на отвод тепла от транзистора VT3. На этом транзисторе, работающем в ключевом режиме, 1ем не менее выделяется значительная мощность, поэтому его следует монтировать на радиаторе. Остальные детали можно разместить на печатной плате, прикрепленной к радиатору.

Таким образом, получается очень компактная конструкция. Резистор R6 должен быть мощностью не менее 2Вт. Диод VD2 должен иметь прямой ток около 2А и обратное напряжение не менее 400В, лучше всего подходит КД202Ж, но возможны и другие варианты. Транзисторы желательно применить те, которые указаны на принципиальной схеме, особенно VT3. Транзистор VT2 можно заменить на КТ814 с любыми буквенными индексами. Стабилитрон VD1 желательно установить серии КС с напряжением стабилизации 5,6-9В, (типа КС156А, КС358А, КС172А), при этом увеличится точность поддержания напряжения.

Настройка

Правильно собранный регулятор напряжения не нуждается в особой настройке и обеспечивает стабильность напряжения бортовой сети примерно 0,1 — 0,12В, при изменении числа оборотов двигателя от 800 до 5500 об/мин. Проще всего настройку производить на стенде, состоящем из регулируемого блока питания 0 — 17В и лампочки накаливания 12В 5-10Вт. Плюсовой выход блока питания подключают к клемме “+” регулятора, минусовой выход блока питания подключают к клемме «Общ”, а лампочку накаливания подключают к клемме «Ш» и клемме «Общ” регулятора.

Настройка сводится к подбору резистора R2, который изменяют в пределах 1-5 кОм, и добиваются порога срабатывания на уровне 14,2В. Это и есть поддерживаемое напряжение бортовой сети. Увеличивать его выше 14,5В нельзя, поскольку при этом резко сократится ресурс аккумуляторов.