Блок управления двигателем постоянного тока. Методы управления двигателем постоянного тока в сау Схемы блоки управления эл двигателем постоянного тока

Когда я начал разрабатывать блок управления бесколлекторным двигателем (мотор-колесом), было много вопросов о том, как сопоставить реальный двигатель с абстрактной схемой из трех обмоток и магнитов, на которой, как правило, все объясняют принцип управления бесколлекторными двигателями.

Когда я реализовал управление по датчикам Холла я еще не очень понимал, что происходит в двигателе дальше абстрактных трех обмоток и двух полюсов: почему 120 градусов и почему алгоритм управления именно такой.

Все встало на место, когда я начал разбираться в идее бездатчикового управления бесколлекторным двигателем - понимание процесса, происходящего в реальной железке, помогло разработать аппаратную часть и понять алгоритм управления.

Ниже я постараюсь расписать свой путь к пониманию принципа управления бесколлекторным двигателем постоянного тока.


Для работы бесколлекторного двигателя необходимо чтобы постоянное магнитное поле ротора увлекалось за вращающемся электромагнитным полем статора, как и в обычном ДПТ.

Вращение магнитного поля статора осуществляется коммутацией обмоток с помощью электронного блока управления.
Конструкция бесколлекторного двигателя схожа с конструкцией синхронного двигателя, если подключить бесколлекторный двигатель в трехфазную сеть переменного тока, удовлетворяющую электрическим параметрам двигателя, он будет работать.

Определенная коммутация обмоток бесколлекторного двигателя позволяет управлять им от источника постоянного тока. Чтобы понять, как составить таблицу коммутаций бесколлекторного двигателя необходимо рассмотреть управление синхронной машиной переменного тока.

Синхронная машина
Синхронная машина управляется от трехфазной сети переменного тока. Двигатель имеет 3 электрические обмотки, смещенные между собой на 120 электрических градусов.

Запустив трехфазный двигатель в генераторном режиме, постоянным магнитным полем будет наводиться ЭДС на каждую из обмоток двигателя, обмотки двигателя распределены равномерно, на каждую из фаз будет наводиться синусоидальное напряжение и данные сигналы будут смещены между собой на 1/3 периода (рисунок 1). Форма ЭДС меняется по синусоидальному закону, период синусоиды равен 2П(360), поскольку мы имеем дело с электрическими величинами (ЭДС, напряжение, ток) назовем это электрическими градусами и будем измерять период в них.

При подаче на двигатель трехфазного напряжения в каждый момент времени на каждой обмотке будет некое значение силы тока.


Рисунок 1. Вид сигнала трехфазного источника переменного тока.

Каждая обмотка формирует вектор магнитного поля пропорциональный току на обмотке. Сложив 3 вектора можно получить результирующий вектор магнитного поля. Так как с течением времени ток на обмотках двигателя меняется по синусоидальному закону, меняется величина вектора магнитного поля каждой обмотки, а результирующий суммарный вектор меняет угол поворота, при этом величина данного вектора остается постоянной.


Рисунок 2. Один электрический период трехфазного двигателя.

На рисунке 2 изображен один электрический период трехфазного двигателя, на данном периоде обозначено 3 произвольных момента, чтобы построить в каждом из этих моментов вектора магнитного поля отложим данный период, 360 электрических градусов, на окружности. Разместим 3 обмотки двигателя сдвинутые на 120 электрических градусов относительно друг друга (рисунок 3).


Рисунок 3. Момент 1. Вектора магнитного поля каждой обмотки (слева) и результирующий вектор магнитного поля (справа).

Вдоль каждой из фаз построен вектор магнитного поля, создаваемый обмоткой двигателя. Направление вектора определяется направлением постоянного тока в обмотке, если напряжение, прикладываемое к обмотке положительно, то вектор направлен в противоположную сторону от обмотки, если отрицательное, то вдоль обмотки. Величина вектора пропорциональна величине напряжения на фазе в данный момент.
Чтобы получить результирующий вектор магнитного поля необходимо сложить данные вектора по закону сложения векторов.
Аналогично построение для второго и третьего моментов времени.


Рисунок 4. Момент 2. Вектора магнитного поля каждой обмотки (слева) и результирующий вектор магнитного поля (справа).

Так, с течение времени, результирующий вектор плавно меняет свое направление, на рисунке 5 изображены получившиеся вектора и изображен полный поворот магнитного поля статора за один электрический период.


Рисунок 5. Вид вращающегося магнитного поля формируемого обмотками на статоре двигателя.

За этим вектором электрического магнитного поля увлекается магнитное поле постоянных магнитов ротора в каждый момент времени (рисунок 6).


Рисунок 6. Постоянный магнит (ротор) следует направлению магнитного поля формируемого статором.

Так работает синхронная машина переменного тока.

Имея источник постоянного тока необходимо самостоятельно формировать один электрический период со сменой направлений тока на трех обмотках двигателя. Поскольку бесколлекторный двигатель по конструкции такой же, как синхронный, в генераторном режиме имеет идентичные параметры, необходимо отталкиваться от рисунка 5, где изображено сформированное вращающееся магнитное поле.

Постоянное напряжение
Источник постоянного тока имеет только 2 провода «плюс питания» и «минус питания» это значит, что есть возможность подавать напряжение только на две из трех обмоток. Необходимо аппроксимировать рисунок 5 и выделить все моменты, при которых возможно скоммутировать 2 фазы из трех.

Число перестановок из множества 3 равняется 6, следовательно, имеется 6 вариантов подключения обмоток.
Изобразим возможные варианты коммутаций и выделим последовательность, при которой вектор будет шаг за шагом проворачиваться далее пока не дойдет до конца периода и не начнет сначала.

Электрический период будем отсчитывать от первого вектора.


Рисунок 7. Вид шести векторов магнитного поля которые можно создать от источника постоянного тока коммутацией двух из трех обмоток.

На рисунке 5 видно, что при управлении трехфазным синусоидальным напряжением имеется множество векторов плавно проворачивающихся с течением времени, а при коммутации постоянным током возможно получить вращающееся поле только из 6 векторов, то есть переключение на следующий шаг должно происходить каждые 60 электрических градусов.
Результаты из рисунка 7 сведены в таблицу 1.

Таблица 1. Полученная последовательность коммутаций обмоток двигателя.

Вид получившегося управляющего сигнала в соответствии с таблицей 1 изображен на рисунке 8. Где -V коммутация на минус источника питания (GND), а +V коммутация на плюс источника питания.


Рисунок 8. Вид управляющих сигналов от источника постоянного тока для бесколлекторного двигателя. Желтый – фаза W, синий – U, красный – V.

Однако реальная картина с фаз двигателя будет похожа на синусоидальный сигнал из рисунка 1. У сигнала образуется трапециевидная форма, так как в моменты, когда обмотка двигателя не подключена, постоянные магниты ротора наводят на нее ЭДС (рисунок 9).


Рисунок 9. Вид сигнала с обмоток бесколлекторного двигателя в рабочем режиме.

На осциллографе это выглядит так:


Рисунок 10. Вид окна осциллографа при измерении одной фазы двигателя.

Конструктивные особенности
Как было сказано ранее за 6 переключений обмоток формируется один электрический период 360 электрических градусов.
Необходимо связать данный период с реальным углом вращения ротора. Двигатели с одной парой полюсов и трехзубым статором применяются крайне редко, двигатели имеют N пар полюсов.
На рисунке 11 изображены модели двигателя с одной парой полюсов и с двумя парами полюсов.


а. б.
Рисунок 11. Модель двигателя с одной (a) и с двумя (б) парами полюсов.

Двигатель с двумя парами полюсов имеет 6 обмоток, каждая из обмоток парная, каждая группа из 3 обмоток смещена между собой на 120 электрических градусов. На рисунке 12б. отложен один период для 6 обмоток. Обмотки U1-U2, V1-V2, W1-W2 соединены между собой и в конструкции представляют 3 провода вывода фаз. Для простоты рисунка не отображены соединения, но следует запомнить, что U1-U2, V1-V2, W1-W2 одно и то же.

На рисунке 12, исходя из данных таблицы 1, изображены вектора для одной и двух пар полюсов.


а. б.
Рисунок 12. Схема векторов магнитного поля для двигателя с одной (a) и с двумя (б) парами полюсов.

На рисунке 13 изображены вектора, созданные 6 коммутациями обмоток двигателя с одной парой полюсов. Ротор состоит из постоянных магнитов, за 6 шагов ротор провернется на 360 механических градусов.
На рисунке обозначены конечные положения ротора, в промежутках между двумя соседними положениями ротор проворачивается от предыдущего к следующему скоммутированному состоянию. Когда ротор достигает данного конечного положения, должно происходить следующее переключение и ротор будет стремиться к новому заданному положению, так чтобы его вектор магнитного поля стал сонаправлен с вектором электромагнитного поля статора.


Рисунок 13. Конечные положения ротора при шестиступенчатой коммутации бесколлекторного двигателя с одной парой полюсов.

В двигателях с N парами полюсов необходимо пройти N электрических периодов для полного механического оборота.
Двигатель с двумя парами полюсов будет иметь два магнита с полюсами S и N, и 6 обмоток (рисунок 14). Каждая группа из 3 обмотки смещены друг относительно друга на 120 электрических градусов.


Рисунок 14. Конечные положения ротора при шестиступенчатой коммутации бесколлекторного двигателя с двумя парами полюсов.

Определение положения ротора бесколлекторного двигателя
Как было сказано ранее для работы двигателя необходимо в нужные моменты времени подключать напряжение на нужные обмотки статора. Подавать напряжение на обмотки двигателя нужно в зависимости от положения ротора, так чтобы магнитное поле статора всегда опережало магнитное поле ротора. Для определения положения ротора двигателя и коммутаций обмоток используют электронный блок управления.
Отслеживание положения ротора возможно несколькими способами:
1. По датчикам Холла
2. По обратной ЭДС
Как правило, датчиками Холла производители оснащают двигатель при выпуске, поэтому это самый распространённый метод управления.
Коммутирование обмоток в соответствии с сигналами обратной ЭДС позволяет отказаться от датчиков встроенных в двигатель и использовать в качестве датчика анализ свободной фазы двигателя, на которую будет наводиться магнитным полем противо-ЭДС.

Управление бесколлекторным двигателем с датчиками Холла
Чтобы коммутировать обмотки в нужные моменты времени необходимо отслеживать положение ротора в электрических градусах. Для этого применяются датчики Холла.
Поскольку имеется 6 состояний вектора магнитного поля необходимо 3 датчика Холла, которые будут представлять один абсолютный датчик положения с трехбитным выходом. Датчики Холла устанавливаются также как обмотки, смещенные между собой на 120 электрических градусов. Это позволяет использовать магниты ротора в качестве воздействующего элемента датчика.


Рисунок 15. Сигналы с датчиков Холла за один электрический оборот двигателя.

Для вращения двигателя необходимо чтобы магнитное поле статора опережало магнитное поле ротора, положение, когда вектор магнитного поля ротора сонаправлен с вектором магнитного поля статора является конечным для данной коммутации, именно в этот момент должно происходить переключение на следующую комбинацию, чтобы не давать ротору зависать в стационарном положении.
Cопоставим сигналы с датчиков Холла с комбинацией фаз которые необходимо скоммутировать (таблица 2)

Таблица 2. Сопоставление сигналов датчиков Холла с коммутацией фаз двигателя.

Положение двигателя HU(1) HV(2) HW(3) U V W
0 0 0 1 0 - +
1 0 1 + - 0
1 0 0 + 0 -
1 1 0 0 + -
0 1 0 - + 0
360/N 0 1 1 - 0 +

При равномерном вращении двигателя с датчиков поступает сигнал смещенный на 1/6 периода, 60 электрических градусов (рисунок 16).


Рисунок 16. Вид сигнала с датчиков Холла.

Управление с помощью сигнала обратной ЭДС
Существуют бесколлекторный двигатели без датчиков положения. Определение положения ротора осуществляется с помощью анализа сигнала ЭДС на свободной фазе двигателя. В каждый момент времени к одной из фаз подключен «+» к другой «-» питания, одна из фаз остается свободной. Вращаясь, магнитное поле ротора наводит ЭДС в свободной обмотке. По мере вращения напряжение на свободной фазе изменяется (рисунок 17).


Рисунок 17. Изменение напряжения на фазе двигателя.

Сигнал с обмотки двигателя разбит на 4 момента:
1. Обмотка подключена к 0
2. Обмотка не подключена (свободная фаза)
3. Обмотка подключена к питающему напряжению
4. Обмотка не подключена (свободная фаза)
Сопоставив сигнал с фаз с управляющим сигналом, видно, что момент перехода на следующее состояние можно детектировать пересечением средней точки (половины питающего напряжения) с фазой, которая в данный момент не подключена (рисунок 18).


Рисунок 18. Сопоставление управляющего сигнала с сигналом на фазах двигателя.

После детектирования пересечения необходимо выдержать паузу и включать следующее состояние. По данному рисунку составлен алгоритм переключений состояний обмоток (таблица 3).

Таблица 3. Алгоритм переключения обмоток двигателя

Текущее состояние U V W Следующее состояние
1 - + 2
2 - + 3
3 + - Ожидание пересечения средней точки из + в - 4
4 + Ожидание пересечения средней точки из - в + - 5
5 Ожидание пересечения средней точки из + в - + - 6
6 - + Ожидание пересечения средней точки из - в + 1

Пересечение средней точки проще всего детектировать компаратором, на один вход компаратора подается напряжение средней точки, а на второй текущее напряжение фазы.


Рисунок 19. Детектирование средней точки компаратором.

Компаратор срабатывает в момент перехода напряжения через среднюю точку и генерирует сигнал для микроконтроллера.

Обработка сигнала с фаз двигателя
Однако сигнал с фаз при регулировании скорости ШИМ отличается видом, и имеет импульсный характер (рисунок 21), в таком сигнале невозможно детектировать пересечение со средней точкой.


Рисунок 20. Вид сигнала фазы при регулировании скорости ШИМ.

Поэтому данный сигнал следует отфильтровать RC фильтром чтобы получить огибающую, а так же разделить под требования компаратора. По мере увеличения скважности шим сигнал будет возрастать по амплитуде (рисунок 22).


Рисунок 21. Схема делителя и фильтра сигнала с фазы двигателя.


Рисунок 22. Огибающая сигнала при изменении скважности ШИМ.

Схема со средней точкой


Рисунок 23. Вид виртуальная средней точки. Картинка взята с avislab.com/

С фаз снимаются сигналы через токограничительные резисторы и объединяются, получается вот такая картина:


Рисунок 24. Вид осциллограммы напряжения виртуальной средней точки.

Из-за ШИМ, напряжение средней точки не постоянно, сигнал так же необходимо фильтровать. Напряжение средней точки после сглаживания будет достаточно большим (в районе питающего напряжения двигателя), его необходимо разделить делителем напряжения до значения половины питающего напряжения.

После прохождения сигнала через фильтр колебания сглаживается и получается ровное напряжение относительно которого можно детектировать пересечение обратной ЭДС.


Рисунок 26. Напряжение после делителя и фильтра низких частот.

Средняя точка будет менять свое значение в зависимости от напряжения (скважности ШИМ), так же как и огибающая сигнала.

Полученные сигналы с компараторов заводятся на микроконтроллер, который их обрабатывает по алгоритму выше.
Пока на этом все.

Во многих станках применяют электромоторы (ЭМ) постоянного тока. Они легко позволяют плавно управлять частотой вращения, изменяя постоянную составляющую напряжения на якорной обмотке, при постоянном напряжении обмотки возбуждения (0В).

Предлагаемая ниже схема позволяет управлять электромотором мощностью до 5 кВт.

Мощные ЭМ постоянного тока имеют несколько особенностей, которые необходимо учитывать:

а) нельзя подавать напряжение на якорь ЭМ без подачи номинального напряжения (обычно 180...220 В) на обмотку возбуждения;

б) чтобы не повредить мотор, недопустимо сразу подавать при включении номинальное напряжение на якорную обмотку, из-за большого пускового тока, превышающего номинальный рабочий в десятки раз.

Приведенная схема позволяет обеспечить необходимый режим работы - плавный запуск и ручную установку нужной частоты вращения ЭМ.

Направление вращения изменится, если поменять полярность подключения проводов на обмотке возбуждения или якоре (делается это обязательно только при выключенном ЭМ).

В схеме применены два реле, что позволяет выполнить автоматическую защиту элементов схемы от перегрузки. Реле К1 является мощным пускателем, оно исключает вероятность включения ЭМ при установленной резистором R1 не нулевой начальной скорости. Для этого на оси переменного резистора R1 закрепляется рычаг, связанный с кнопкой SB2, которая замыкается (рычагом) только при максимальном значении сопротивления (R1) - это соответствует нулевой скорости.

Когда замкнуты контакты SB2, реле К1 при нажатии кнопки ПУСК (SB1) включится и своими контактами К1.1 самоблокируется, а контакты К1.2 включат электропривод.

Реле К2 обеспечивает защиту от перегрузки при отсутствии тока в цепи обмотки возбуждения ЭМ. В этом случае контакты К2.1 отключат питание схемы.

Питается схема управления без трансформатора, непосредственно от сети через резистор R3.

Величина действующего значения напряжения на якорной обмотке устанавливается с помощью изменения резистором R1 угла открывания тиристоров VS1 и VS2. Тиристоры включены в плечи моста, что уменьшает число силовых элементов в схеме.

На однопереходном транзисторе VT2 собран генератор импульсов, синхронизированных с периодом пульсации сетевого напряжения. Транзистор VT1 усиливает импульсы по току, и через разделительный трансформатор Т1 они поступают на управляющие выводы тиристоров.

При выполнении конструкции тиристоры VS1, VS2 и диоды VD5, VD6 необходимо установить на теплоотводящую пластину (радиатор).

Часть схемы управления, выделенная на рисунке пунктиром, размещается на печатной плате.

Постоянные резисторы применены типа С2-23, переменный R1 - типа ППБ-15Т, R7 - СП--196, R3 - типа ПЭВ-25. Конденсаторы С1 и С2 любого типа, на рабочее напряжение не менее 100 В. Выпрямительные диоды VD1 ...VD4 на ток 10 А и обратное напряжение 300 В, например Д231 Д231А Д232,Д232А,Д245,Д246.

Импульсный трансформатор Т1 выполнен на ферритовом кольце М2000НМ типоразмера К20х12х6 мм и намотан проводом ПЭЛШО диаметром 0,18 мм. Обмотка 1 и 2 содержат по 50 витков, а 3 - 80 витков.

Перед намоткой, острые грани сердечника нужно закруглить надфилем, чтобы исключить продавливание и замыкание витков.

При первоначальном включении схемы замеряем ток в цепи обмотки возбуждения (0В) и по закону Ома рассчитываем номинал резистора R2 так, чтобы срабатывало реле К2. Реле К2 может быть любым низковольтным (6...9 В) - чем меньше напряжение срабатывания, тем лучше. При выборе резистора R2 необходимо учитывать также рассеиваемую на нем мощность. -ная ток в цепи 0В и напряжение на резисторе, ее легко посчитать по формуле P=UI. Вместо К2 и R2 лучше применять выпускаемые промышленностью специальные токовые реле, но они из-за узкой области применения не всем доступны. Токовое реле несложно изготовить самостоятельно, намотав на большем герконе примерно 20 витков проводом ПЭЛ диаметром 0.7...1 мм.

Для настройки схемы управления вместо якорной цепи мотора подключаем лампу мощностью 300...500 Вт и вольтметр. Необходимо убедиться в плавном изменении напряжения на лампе резистором R1 от нуля до максимума,

Иногда, из-за разброса параметров однопереходного транзистора, может потребоваться подбор номинала конденсатора С2 (от 0,1 до 0,68 мкФ) и резистора R7 (R7 устанавливает при минимальном значении сопротивления R1 максимум напряжения на нагрузке).

Если при правильном монтаже не открываются тиристоры, то необходимо поменять местами выводы во вторичных обмотках Т1. Неправильная фазировка управляющего напряжения, приходящего на тиристоры VS1 и VS2, не может их повредить. Для удобства контроля работы тиристоров управляющее напряжение допустимо подавать сначала на один тиристор, а потом на другой - если регулируется резистором R1 напряжение на нагрузке (лампе), фаза подключения импульсов управления правильная. При работе обоих тиристоров и настроенной схеме напряжение на нагрузке должно меняться от 0 до 190 В.

Исключить вероятность подачи максимального напряжения на якорную обмотку в момент включения можно и электронным способом, воспользовавшись схемой, аналогичной приведенной на рис 6.17. (Конденсатор С2 обеспечивает плавное нарастание выходного напряжения в момент включения, а в дальнейшем на работе схемы не сказывается.) В этом случае включатель SB2 не нужен

Публикация в журнале «Компоненты и технологии» двух статей, посвященных шаговым двигателям, особенностям их конструкции и схемам управления, а также промышленным решениям, доступным для выбора таких двигателей, вызвала дискуссию и интерес читателей. В ходе обсуждения было высказано пожелание автору предложить столь же гибкие и простые практические решения в виде схем для управления коллекторными двигателями постоянного тока малой и средней мощности, поскольку в технических изданиях уделяется недостаточное внимание данному вопросу. Именно об этом и рассказывает настоящая статья. В материале рассмотрены практические решения и даны рекомендации в части управления коллекторными двигателями постоянного тока малой и средней мощности.

Как известно, коллекторные двигатели постоянного тока, если смотреть в общем плане, являются наиболее доступными и распространенными в использовании, находящими надлежащее место в самых разнообразных устройствах. Их достоинства несомненны — это цена и простота схем управления. Если с первым утверждением трудно не согласиться, то второе — часто вводит в заблуждение, и не только неопытного пользователя. Действительно, управление скоростью такого двигателя вроде бы и не вызывает особых сложностей — это могут быть как обычные аналоговые регуляторы напряжения, так и более сложные схемы на основе широтно-импульсных (ШИМ) регуляторов. Проблема, а вернее, проблемы скрываются в другом. Дело в том, что необходимо рассматривать вопрос управления коллекторным двигателем постоянного тока в контексте его реального применения с конкретной нагрузкой и в конкретных условиях, а именно — строить схему управления в зависимости от типа решаемой задачи.

Если стоит вопрос регулировки скорости коллекторного двигателя без ее стабилизации, то для этой цели используются как аналоговые, так и импульсные схемы прямого управления без обратной связи. Аналоговые регуляторы применяются для управления маломощными двигателями и выполняются, как правило, на основе схем стабилизации напряжения иногда с возможностью ограничения максимального тока для защиты двигателя и нагрузки. Но наиболее часто используются регуляторы с ШИМ. В отличие от аналоговых схемы управления с ШИМ обладают значительно более высоким КПД. Их цена в общем соизмерима, так как они не требуют дорогих радиаторов. Однако в некоторых применениях им необходима стабилизация напряжения питания, так как постоянная составляющая их выходного напряжения зависит не только от отношения длительности импульса к периоду импульсной последовательности τ/Τ, но и от амплитуды. Можно применить и понижающие импульсные DC/DC-преобразователи, если они обеспечивают соответствующий диапазон регулирования напряжения. Расчет таких преобразователей не особо сложен, для этого понадобится интерактивный программный калькулятор высокого уровня, описанный в . Но при расчете DC/DC-преобразователей следует учитывать, что они должны обеспечить надежную работу не только в нужном диапазоне напряжений, но и токов, что не всегда просто оптимизировать. Именно поэтому рекомендуется не использовать непроверенные «готовые» схемные решения, а обратиться к расчетам и правильному выбору ИМС преобразователя.

Если существует проблема не просто регулирования, а стабилизации скорости, она решается при помощи сложных систем с контуром обратной связи. Одним из элементов такой обратной связи являются датчики, дающие информацию о скорости вращения. Информация снимается или с вала ротора двигателя, или с конечного исполнительного механизма. Стабилизация скорости осуществляется либо путем использования фазовой автоматической подстройки частоты (ФАПЧ) вращения, либо традиционными для автоматики специальными регуляторами. Обычно применяются пропорционально-интегрально-дифференциальные (ПИД) регуляторы, как более универсальные, или пропорционально-интегральные (ПИ), как более простые. В любом случае оба решения достаточно сложны как для расчета, так и для исполнения, поскольку они привязаны не только к конкретному типу двигателя, но и ко всей системе привода в целом. Причем характеристики регулирования в данных системах определяются экспериментально. Ознакомиться с подобными регуляторами можно во втором томе . Все изложенное выше касается построения петли управления. Но в любом случае в качестве конечных каскадов в таких системах предусмотрены либо аналоговые регуляторы, либо регуляторы с ШИМ.

Но есть задачи и другого типа. Например, нам необходимо осуществить управление прецизионной переменной нагрузкой, не допускающей рывков и чувствительной к остановке и пуску двигателя. Другими словами, требуется обеспечить плавный старт, равномерное вращение двигателя под не прогно-зированно меняющейся нагрузкой на его валу и его плавную остановку при неком заданном увеличении момента на валу двигателя. Пример такой задачи — управление приемным узлом магнитного регистратора. Понятно, что рывки при вращении двигателя в этом применении совершенно недопустимы, а старт и остановка двигателя должны быть «мягкими». Особенно остро эта проблема стоит при использовании малоинерционных двигателей, то есть миниатюрных двигателей с малой собственной массой ротора. Простая подача некоторого фиксированного напряжения на такой двигатель приводит к его мгновенному старту и рывку магнитного носителя, а в момент его окончания (если конец носителя жестко зафиксирован) — возникает удар уже из-за накопленной массы и инерционности такой нагрузки на валу двигателя (сказывается собственная масса накопленного носителя в приемном узле). Один из наиболее подходящих вариантов решения подобной проблемы, который использовался автором в серийном изделии, представлен на рис. 1.

Рис. 1. Схема управления для маломощных двигателей, работающих на прецизионную нагрузку с переменным моментом

Естественно, можно подобрать стандартные ИМС регуляторов, но данное решение более гибко и легко адаптируется к конкретному применению. Оно особенно удобно в случаях, когда важна не скорость вращения, а необходимый момент, который должен развиваться двигателем. Причем он точно не определен или меняется в зависимости от обстоятельств, например от внешнего воздействия, изменения нагрузки или напряжения питания. Схема представляет собой регулятор напряжения с внешним управлением запуском и ограничением по току, то есть он имеет падающую выходную характеристику — зависимость выходного напряжения от тока, потребляемого двигателем. Выходное напряжение регулятора при номинальной нагрузке двигателя (задается делителем R6, R8 и для варианта, приведенного на рис. 1) может быть установлено в пределах от 10,8 до 2,3 В. В среднем положении ротора подстроечного резистора R8 выходное напряжение регулятора при изменении питающего напряжения от 9 до 15 В равно (4,4 ±0,1) В. Первичная характеристика управления ограничением по току задается номиналом сопротивления R3 и устанавливается подстроечным резистором R4 (с учетом резистора R5). Максимальный выходной ток может быть с приемлемой точностью рассчитан по формуле:

где 6,6 — это максимальное напряжение на эмиттере транзистора VT1 регулятора в режиме короткого замыкания в нагрузке.

В приведенной схеме, в отличие от остальных схем регуляторов, напряжение в режиме короткого замыкания мало зависит от установленного выходного напряжения регулятора. В предложенной схеме реальный максимальный выходной ток равен примерно 3,3 А, а минимальный ток ограничения составляет приблизительно 40 мА. Как можно видеть, диапазон регулировки тока достаточно широк, что не под силу многим другим схемам регуляторов, в которых нет внутреннего усилителя, дополняющего токовый сенсор. Ток ограничения в среднем положении ротора подстроечного резистора R4 лежит на уровне 340 мА во всем диапазоне выходных напряжений при изменении питающего регулятор напряжения от 9 до 15 В. Максимальный ток достигается в левом положении движка (рис. 1), минимальный — в правом. Как уже упоминалось, выходное напряжение, а следовательно, и скорость вращения двигателя при минимальной нагрузке ротора устанавливается подстроечным резистором R8 («скорость»), а подстройка необходимого уровня ограничения по току осуществляется подстроечным резистором R4 («огр. тока»).

Учитывая особенности приведенной схемы, ее настройка производится следующим образом: выход схемы управления закорачивается амперметром, и подстроечным резистором R4 устанавливается необходимый ток ограничения; затем подключается двигатель на минимальной нагрузке ротора и резистором R8 устанавливается соответствующее выходное напряжение, обеспечивающее заданную скорость вращения двигателя. Схема с высокой точностью (в описываемом режиме не хуже чем в 2%) удерживает выходное напряжение на заданном уровне до достижения 65% нагрузки (максимального выходного тока, установленного резистором R4). Далее напряжение на двигателе начинает плавно уменьшаться, тем самым ограничивая развиваемый им момент. График изменения тока и напряжения в зависимости от нагрузки двигателя (рабочее напряжение 5 В, сопротивление обмотки 2 Ом) приведен на рис. 2.

Рис. 2. График выходного тока (I out) и выходного напряжения (V out) регулятора (рис. 1) в зависимости от нагрузки при токе ограничения 200 мА

Управление включением/выключением двигателя осуществляется командой CTRL — логической единицей от любой цифровой микросхемы или подачей на этот вывод напряжения уровнем не ниже +1,5 В. При включении схемы (из-за ограничения тока и, следовательно, момента) рывка в управлении внешней нагрузкой не происходит. После разгона двигатель переходит в стационарный режим с током потребления ниже установленного схемой ограничения. При увеличении нагрузки двигателя более установленного уровня выходной ток регулятора остается на уровне, заданном схемой ограничения, а напряжение на двигателе плавно уменьшается (рис. 2) и при закорачивании его ротора вследствие полной остановки становится равным падению напряжения на активном сопротивлении обмотки ротора при заданном максимальном выходном токе. График, показывающий изменение мощности двигателя (условия аналогичные для графика, приведенного на рис. 2) в зависимости от нагрузки, показан на рис. 3.

Рис. 3. График зависимости мощности, развиваемой двигателем от нагрузки, при токе ограничения 200 мА

Как видно из графика (рис. 3), мощность, в случае если нагрузка на двигатель превышает 70%, начинает ограничиваться и плавно уменьшаться. При принудительной остановке двигателя она составит всего 12% от максимально установленной, тем самым защищая двигатель от перегрузки и исключая его резкое торможение. Ток ограничения регулятора рекомендуется выбирать на 20-25% выше номинального рабочего тока в заданном режиме эксплуатации двигателя при минимально допустимом рабочем напряжении двигателя. При проектировании устройств с использованием описанного принципа необходимо обязательно учитывать мощность, рассеиваемую на регулирующем транзисторе VT1 (возможно, потребуется радиатор), а в ряде случаев и мощность, рассеиваемую на резисторе R3. Кроме особенностей схемы, описанных выше, данное решение продлевает срок службы двигателя и упрощает общую конструкцию приемного узла, так как она уже не требует большого количества компенсирующих неравномерность приема магнитного носителя роликов. А в отличие от вариантов с использованием ШИМ данное решение практически не оказывает дополнительного влияния на общий уровень электромагнитных и радиопомех устройства в целом.

Может возникнуть резонный вопрос: зачем такая сложность, когда можно использовать схему на основе интегрального стабилизатора с ограничением тока? В качестве примера рассмотрим «похожий» вариант на базе ИМС регулируемого стабилизатора напряжения с опцией ограничения его выходного тока LM317T . Такая схема представлена на рис. 4.

Рис. 4. Упрощенный вариант аналогового регулятора на базе ИМС LM317T

Расчет такой схемы предельно прост. Для рассматриваемого случая выходное напряжение на холостом ходу определяется по формуле:

где V ref — напряжение внутреннего опорного источника, согласно спецификации типовое значение V ref = 1,25 В.

Ток ограничения задается резистором R lim и равен:

Условия оставим без изменений: выходное напряжение 5 В, ток ограничения 200 мА. Результаты расчетов номиналов элементов указаны на схеме рис. 4.

Теперь, чтобы развеять сомнения и снять вопросы по использованию подобных решений, на рис. 5 и 6 приведены графики зависимостей для схемы рис. 4 в аналогичных условиях схемы рис. 1.

Рис. 5. График выходного тока (I out) и выходного напряжения (V out) регулятора (рис. 4) в зависимости от нагрузки при токе ограничения 200 мА

Рис. 6. Графики зависимости мощности и напряжения на двигателе от нагрузки при токе ограничения 200 мА для варианта схемы на рис. 4

Заметна разница? Мощность на двигателе упала в два раза, и схема уже не является стабилизатором напряжения. Токоограничивающий резистор будет иметь номинал на уровне 6 Ом, и об оперативной подстройке тока можно будет забыть. При этом учтите, что напряжение холостого хода необходимо будет выставить не 5 В, а 6,4 В. Выйти из такой ситуации можно последовательным соединением двух каскадов на ИМС LM317T. Первый включается в режим стабилизатора тока на 200 мА, второй — в режим стабилизатора напряжения на 5 В. Но даже в таком варианте вы не получите ту гибкость в регулировке и управлении (в частности, управление включением/выключением малым током), которую дает предлагаемая схема на рис. 1.

Рассмотрим еще один пример — управление без применения ШИМ относительно мощным коллекторным двигателем, который управляет массивной инерционной нагрузкой, требующей относительно точного позиционирования при ее остановке и, главное, реверса. Скажем, это некоторая массивная поворотная платформа с исполнительным механизмом. Каковы особенности данного варианта управления? Как видим, здесь, кроме обеспечения защиты уже самого двигателя от перегрузки, необходимо обеспечить его реверс и достаточно точную остановку в заданном положении приводимой им в движение массивной платформы. Обычные регуляторы, основанные на анализе тока через обмотки двигателя (в момент стопорения его ротора), здесь не эффективны, поскольку нагрузка на двигатель и без того высока, соответственно, «выловить» увеличение тока в момент остановки практически невозможно. Иными словами, вычислить, что это — влияние нагрузки или остановка двигателя из-за остановки его ротора по изменению тока в обмотке, — невозможно. Решение такой задачи потребовалось автору статьи при разработке схемы управления коллекторным двигателем постоянного тока для поворота платформы с исполнительным механизмом робототех-нического оборудования с массой в 50 кг. Для разгрузки самого двигателя использовался редуктор с передаточным числом 810:1. Ясно, что если не принять специальных мер, то платформа не только не начнет движение и не остановится в заданной позиции, но при старте или принудительной остановке двигателя механическим стопором произойдет разрушение его редуктора. Это же может произойти и при вероятной аварийной остановке. Из-за относительно большой мощности примененного двигателя Como Drills 91908101 4,5-15 В 21,2 Вт (номер по RS-каталогу 321-3170) использование управления аналогично решению, приведенному на рис. 1, и широко используемым вариантам управления с ШИМ является явно нецелесообразным и невозможным. Как отмечалось выше, здесь требуется реверс двигателя и достаточно точная его остановка в условиях инерционной нагрузки. Удобное и, главное, гибкое решение для реализации данной задачи представлено на рис. 7. Автор статьи применяет данное устройство на практике как в качестве тестового модуля, так и в несколько измененном виде в составе серийного изделия.

Рис. 7. Схема управления для коллекторных двигателей средней мощности, работающих на инерционную нагрузку

Основа схемы — микросхема драйвера LMD18245T (ранее National Semiconductor Corp., в настоящее время Texas Instruments Inc.), обычно используемого для шаговых двигателей в нестандартном, не документированном в спецификации включении без импульсного управления. Учитывая допустимое использование этой ИМС в долговременном режиме прерывания подачи импульсов управления, предложенный вариант ее включения нельзя считать запрещенным. Подробно особенности данной ИМС описаны в . Напомним кратко: максимальный ток драйвера задается резистором, включенным в цепь контакта 13 ИМС LMD18245T (резистор R4, рис. 4), и двоичным кодом на контактах цепи управления выходным током (выводы 8, 7, 6, 4). Формула для расчета максимального выходного тока драйвера приведена в спецификации , и для рассматриваемого случая он будет равен:

где V DAC ref — опорное напряжение ЦАП (в рассматриваемой схеме V DAC ref = 5 В); D — задействованные разряды ЦАП (в рассматриваемой схеме используются все 16 разрядов, «лог. 1» подана на все четыре входа программирования М1, М2, М3, М4); R S — номинал токоограничивающего резистора (R4 = 15 кОм).

Соответственно (поскольку задействованы все 16 разрядов ЦАП), ток ограничения драйвера при использовании токоограничивающего резистора R S номиналом 15 кОм (R4) составит 1,33 А. Для выбора и установки режима можно воспользоваться и таблицей, имеющейся в последнем выпуске спецификации .

Достоинством ИМС LMD18245T является то, что токоограничивающий резистор R4 не включен непосредственно в цепь питания двигателя, имеет достаточно большой собственный номинал (в рассматриваемом случае это 15 кОм), а значит, и маленькую рассеиваемую мощность и (главное!) совершенно не влияет на КПД схемы управления. Ограничение тока осуществляется таким образом, что для большинства применений нет надобности в охлаждающем радиаторе. При включении ключи выбранных плеч моста полностью открыты, а при достижении максимальной (заданной по входам «М» и номиналом резистора R4) величины тока осуществляется его «нарезка» (так называемый чоппинг, от англ. chopping ). Эта «нарезка» не является неким подобием ШИМ и осуществляется с заданными пользователем импульсами. Они не имеют крутых фронтов, длительность импульсов «нарезки» задается параллельной RC-цепочкой, подсоединенной к выводу 3 драйвера (элементы R5, C6), и равна 1,1 R5C6 в секундах. Это позволяет в некоторой мере упростить решение вопросов электромагнитной совместимости. Еще одним большим достоинством этой ИМС является то, что ее выходной каскад питается отдельно от цепей управления — таким образом можно легко установить требуемое напряжение для двигателя конкретного типа.

Включение двигателя осуществляется кнопкой «ПУСК» (В1). Никаких внешних генераторов не требуется. Выходной каскад LMD18245T выполнен по мостовой схеме и содержит все необходимые защитные элементы — быстродействующие диоды, установленные параллельно выходным ключам. Таким образом, можно легко осуществлять реверс двигателя без помощи мощных реле, дополнительных схем управления и защитных элементов. Реверс выполняется подачей логической единицы переключателем «направление» (S1). Кроме того, данная ИМС позволяет легко реализовать и режим принудительного торможения двигателя в момент остановки. Это делается замыканием обмотки ротора двигателя. Остановка с торможением после снятия команды ПУСК осуществляется подачей логической единицы на вывод 10 (вход BRAKE), и обмотка двигателя закорачивается внутренними ключами драйвера. В указанной схеме реализован двойной режим управления остановкой двигателя: во-первых, это ограничение тока до нуля путем подачи логических нулей на входы программирования уровня максимального тока (выводы 8, 7, 6, 4); во-вторых, подачей логической единицы на вход торможения BRAKE (вывод 10). Такой подход обеспечивает надежную остановку механизма в целом в заданном положении без использования упорных стопоров. Необходимо отметить, что в общем случае принудительная подача нулей на разряды ЦАП не является строго необходимой, все это предусмотрено внутренней структурой логики ИМС LMD18245T, и ИМС D1 (рис. 7) можно было бы считать излишеством, если бы не требовалось устранить дребезг контактов кнопки включения двигателя.

Управление двигателем постоянного тока в САУ подразумевает либо изменение скорости вращения пропорционально некоторому сигналу управления, либо поддержание этой скорости неизменной при воздействии внешних дестабилизирующих факторов.

Используются 4 основные метода управления, реализующие перечисление выше принципы:

    реостатно-контакторное управление;

    управление по системе «генератор-двигатель» (Г-Д);

    управление по системе «управляемый выпрямитель –Д» (УВ-Д);

    импульсное управление.

Подробное исследование этих способов – предмет ТАУ и курса «Основы электропривода». Мы рассмотрим только основные положения, имеющие непосредственное отношение к электромеханике.

Обычно используются 3 схемы:

    при регулировке скорости n от 0 до nном в цепь якоря включают реостат (якорное управление);

    при необходимости получить n > nном реостат включают в цепь ОВ (полюсное управление);

    для регулирования скорости n < nном и n > nном реостаты включают как в цепь якоря, так и в цепь ОВ.

Перечисленные схемы применяются при ручном управлении. Для автоматического управления используют ступенчатое переключение R ра и R рв с помощью контакторов (реле, электронных коммутаторов).


Если требуется точное и плавное регулирование скорости, число коммутируемых резисторов и элементов коммутации должно быть большим, из-за чего увеличиваются габариты системы, стоимость и снижается надежность.

Регулирование частоты вращения от 0 до по схеме рис. производится регулировкой R в (U гизменяется от 0 до n ном). Для получения скорости двигателя больше nном - изменением R вд (уменьшение тока ОВ двигателя уменьшает его основной поток Ф, что и приводит к увеличению скорости n).

Переключатель S1 предназначен для реверса двигателя (изменения направления вращения его ротора).

Поскольку управление Д осуществляется путем регулирования сравнительно малых токов возбуждения Г и Д, оно легко адаптируется к задачам САУ.


Недостаток такой схемы – большие габариты системы, масса, низкий КПД, поскольку здесь имеется трехкратное преобразование преобразование энергии (электрической в механическую и обратно, и на каждом этапе имеются потери энергии).

Управление по системе «управляемый выпрямитель – двигатель»

Система «управляемый выпрямитель – двигатель» (см. рисунок) похожа на предыдущую, но вместо электромашинного источника регулируемого напряжения, состоящего из, например, трехфазного, двигателя переменного тока и Г=Т, используется управляемый, например, тоже трехфазный тиристорный электронный выпрямитель.

Сигналы управления формируются отдельным блоком управления и обеспечивают требуемый угол открывания тиристоров, пропорциональный сигналу управления Uу.

Достоинства такой системы - высокий КПД, малые габариты и масса.

Недостатком по сравнению с предыдущей схемой (Г-Д) является ухудшение условий коммутации Д из-за пульсаций его тока якоря, особенно при питании от однофазной сети.

На двигатель с помощью импульсного прерывателя подаются импульсы напряжения, модулированные (ШИМ, ВИМ) в соответствии с управляющим напряжением.

Таким образом, изменение скорости вращения якоря достигается не за счет изменения напряжения управления, а путем изменения времени, в течение которого к двигателю подводится номинальное напряжение. Очевидно, что работа двигателя состоит из чередующихся периодов разгона и торможения (см. рисунок).

Если эти периоды малы по сравнению с полным временем разгона и остановки якоря, то скорость n не успевает к концу каждого периода достигать установившихся значений nном при разгоне или n = 0 при торможении, и устанавливается некоторая средняя скорость nср, величина которой определяется относительной продолжительностью включения.

Поэтому в САУ требуется схема управления, назначение которой – преобразование постоянного или изменяющегося сигнала управления в последовательность управляющих импульсов с относительной продолжительностью включения, являющейся заданной функцией величины этого сигнала. В качестве элементов коммутации используются силовые полупроводниковые приборы – .